Extensions 1→N→G→Q→1 with N=C3 and Q=He3.4C6

Direct product G=N×Q with N=C3 and Q=He3.4C6

Semidirect products G=N:Q with N=C3 and Q=He3.4C6
extensionφ:Q→Aut NdρLabelID
C3⋊(He3.4C6) = C9○He34S3φ: He3.4C6/C9○He3C2 ⊆ Aut C3546C3:(He3.4C6)486,246

Non-split extensions G=N.Q with N=C3 and Q=He3.4C6
extensionφ:Q→Aut NdρLabelID
C3.1(He3.4C6) = C924S3φ: He3.4C6/C9○He3C2 ⊆ Aut C3546C3.1(He3.4C6)486,140
C3.2(He3.4C6) = (C32×C9)⋊8S3φ: He3.4C6/C9○He3C2 ⊆ Aut C3546C3.2(He3.4C6)486,150
C3.3(He3.4C6) = C9⋊C92S3φ: He3.4C6/C9○He3C2 ⊆ Aut C3546C3.3(He3.4C6)486,152
C3.4(He3.4C6) = C926S3φ: He3.4C6/C9○He3C2 ⊆ Aut C3186C3.4(He3.4C6)486,153
C3.5(He3.4C6) = C925S3φ: He3.4C6/C9○He3C2 ⊆ Aut C3546C3.5(He3.4C6)486,156
C3.6(He3.4C6) = C9×He3⋊C2central extension (φ=1)81C3.6(He3.4C6)486,143