Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D31

Direct product G=N×Q with N=C2×C4 and Q=D31
dρLabelID
C2×C4×D31248C2xC4xD31496,28

Semidirect products G=N:Q with N=C2×C4 and Q=D31
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D31 = D62⋊C4φ: D31/C31C2 ⊆ Aut C2×C4248(C2xC4):1D31496,13
(C2×C4)⋊2D31 = C2×D124φ: D31/C31C2 ⊆ Aut C2×C4248(C2xC4):2D31496,29
(C2×C4)⋊3D31 = D1245C2φ: D31/C31C2 ⊆ Aut C2×C42482(C2xC4):3D31496,30

Non-split extensions G=N.Q with N=C2×C4 and Q=D31
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D31 = Dic31⋊C4φ: D31/C31C2 ⊆ Aut C2×C4496(C2xC4).1D31496,11
(C2×C4).2D31 = C4.Dic31φ: D31/C31C2 ⊆ Aut C2×C42482(C2xC4).2D31496,9
(C2×C4).3D31 = C4⋊Dic31φ: D31/C31C2 ⊆ Aut C2×C4496(C2xC4).3D31496,12
(C2×C4).4D31 = C2×Dic62φ: D31/C31C2 ⊆ Aut C2×C4496(C2xC4).4D31496,27
(C2×C4).5D31 = C2×C31⋊C8central extension (φ=1)496(C2xC4).5D31496,8
(C2×C4).6D31 = C4×Dic31central extension (φ=1)496(C2xC4).6D31496,10

׿
×
𝔽