metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D31, C31⋊C2, sometimes denoted D62 or Dih31 or Dih62, SmallGroup(62,1)
Series: Derived ►Chief ►Lower central ►Upper central
C31 — D31 |
Generators and relations for D31
G = < a,b | a31=b2=1, bab=a-1 >
Character table of D31
class | 1 | 2 | 31A | 31B | 31C | 31D | 31E | 31F | 31G | 31H | 31I | 31J | 31K | 31L | 31M | 31N | 31O | |
size | 1 | 31 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ3127+ζ314 | ζ3125+ζ316 | ζ3123+ζ318 | ζ3121+ζ3110 | ζ3119+ζ3112 | ζ3117+ζ3114 | ζ3116+ζ3115 | ζ3118+ζ3113 | ζ3120+ζ3111 | ζ3122+ζ319 | ζ3124+ζ317 | ζ3126+ζ315 | ζ3128+ζ313 | ζ3130+ζ31 | ζ3129+ζ312 | orthogonal faithful |
ρ4 | 2 | 0 | ζ3124+ζ317 | ζ3126+ζ315 | ζ3117+ζ3114 | ζ3129+ζ312 | ζ3121+ζ3110 | ζ3122+ζ319 | ζ3128+ζ313 | ζ3116+ζ3115 | ζ3127+ζ314 | ζ3123+ζ318 | ζ3120+ζ3111 | ζ3130+ζ31 | ζ3118+ζ3113 | ζ3125+ζ316 | ζ3119+ζ3112 | orthogonal faithful |
ρ5 | 2 | 0 | ζ3130+ζ31 | ζ3117+ζ3114 | ζ3129+ζ312 | ζ3118+ζ3113 | ζ3128+ζ313 | ζ3119+ζ3112 | ζ3127+ζ314 | ζ3120+ζ3111 | ζ3126+ζ315 | ζ3121+ζ3110 | ζ3125+ζ316 | ζ3122+ζ319 | ζ3124+ζ317 | ζ3123+ζ318 | ζ3116+ζ3115 | orthogonal faithful |
ρ6 | 2 | 0 | ζ3117+ζ3114 | ζ3121+ζ3110 | ζ3128+ζ313 | ζ3127+ζ314 | ζ3120+ζ3111 | ζ3118+ζ3113 | ζ3125+ζ316 | ζ3130+ζ31 | ζ3123+ζ318 | ζ3116+ζ3115 | ζ3122+ζ319 | ζ3129+ζ312 | ζ3126+ζ315 | ζ3119+ζ3112 | ζ3124+ζ317 | orthogonal faithful |
ρ7 | 2 | 0 | ζ3126+ζ315 | ζ3123+ζ318 | ζ3121+ζ3110 | ζ3128+ζ313 | ζ3116+ζ3115 | ζ3129+ζ312 | ζ3120+ζ3111 | ζ3124+ζ317 | ζ3125+ζ316 | ζ3119+ζ3112 | ζ3130+ζ31 | ζ3117+ζ3114 | ζ3127+ζ314 | ζ3122+ζ319 | ζ3118+ζ3113 | orthogonal faithful |
ρ8 | 2 | 0 | ζ3116+ζ3115 | ζ3124+ζ317 | ζ3130+ζ31 | ζ3122+ζ319 | ζ3117+ζ3114 | ζ3125+ζ316 | ζ3129+ζ312 | ζ3121+ζ3110 | ζ3118+ζ3113 | ζ3126+ζ315 | ζ3128+ζ313 | ζ3120+ζ3111 | ζ3119+ζ3112 | ζ3127+ζ314 | ζ3123+ζ318 | orthogonal faithful |
ρ9 | 2 | 0 | ζ3125+ζ316 | ζ3122+ζ319 | ζ3119+ζ3112 | ζ3116+ζ3115 | ζ3118+ζ3113 | ζ3121+ζ3110 | ζ3124+ζ317 | ζ3127+ζ314 | ζ3130+ζ31 | ζ3129+ζ312 | ζ3126+ζ315 | ζ3123+ζ318 | ζ3120+ζ3111 | ζ3117+ζ3114 | ζ3128+ζ313 | orthogonal faithful |
ρ10 | 2 | 0 | ζ3129+ζ312 | ζ3128+ζ313 | ζ3127+ζ314 | ζ3126+ζ315 | ζ3125+ζ316 | ζ3124+ζ317 | ζ3123+ζ318 | ζ3122+ζ319 | ζ3121+ζ3110 | ζ3120+ζ3111 | ζ3119+ζ3112 | ζ3118+ζ3113 | ζ3117+ζ3114 | ζ3116+ζ3115 | ζ3130+ζ31 | orthogonal faithful |
ρ11 | 2 | 0 | ζ3128+ζ313 | ζ3120+ζ3111 | ζ3125+ζ316 | ζ3123+ζ318 | ζ3122+ζ319 | ζ3126+ζ315 | ζ3119+ζ3112 | ζ3129+ζ312 | ζ3116+ζ3115 | ζ3130+ζ31 | ζ3118+ζ3113 | ζ3127+ζ314 | ζ3121+ζ3110 | ζ3124+ζ317 | ζ3117+ζ3114 | orthogonal faithful |
ρ12 | 2 | 0 | ζ3121+ζ3110 | ζ3116+ζ3115 | ζ3120+ζ3111 | ζ3125+ζ316 | ζ3130+ζ31 | ζ3127+ζ314 | ζ3122+ζ319 | ζ3117+ζ3114 | ζ3119+ζ3112 | ζ3124+ζ317 | ζ3129+ζ312 | ζ3128+ζ313 | ζ3123+ζ318 | ζ3118+ζ3113 | ζ3126+ζ315 | orthogonal faithful |
ρ13 | 2 | 0 | ζ3122+ζ319 | ζ3129+ζ312 | ζ3118+ζ3113 | ζ3124+ζ317 | ζ3127+ζ314 | ζ3116+ζ3115 | ζ3126+ζ315 | ζ3125+ζ316 | ζ3117+ζ3114 | ζ3128+ζ313 | ζ3123+ζ318 | ζ3119+ζ3112 | ζ3130+ζ31 | ζ3121+ζ3110 | ζ3120+ζ3111 | orthogonal faithful |
ρ14 | 2 | 0 | ζ3123+ζ318 | ζ3119+ζ3112 | ζ3116+ζ3115 | ζ3120+ζ3111 | ζ3124+ζ317 | ζ3128+ζ313 | ζ3130+ζ31 | ζ3126+ζ315 | ζ3122+ζ319 | ζ3118+ζ3113 | ζ3117+ζ3114 | ζ3121+ζ3110 | ζ3125+ζ316 | ζ3129+ζ312 | ζ3127+ζ314 | orthogonal faithful |
ρ15 | 2 | 0 | ζ3118+ζ3113 | ζ3127+ζ314 | ζ3126+ζ315 | ζ3117+ζ3114 | ζ3123+ζ318 | ζ3130+ζ31 | ζ3121+ζ3110 | ζ3119+ζ3112 | ζ3128+ζ313 | ζ3125+ζ316 | ζ3116+ζ3115 | ζ3124+ζ317 | ζ3129+ζ312 | ζ3120+ζ3111 | ζ3122+ζ319 | orthogonal faithful |
ρ16 | 2 | 0 | ζ3119+ζ3112 | ζ3118+ζ3113 | ζ3124+ζ317 | ζ3130+ζ31 | ζ3126+ζ315 | ζ3120+ζ3111 | ζ3117+ζ3114 | ζ3123+ζ318 | ζ3129+ζ312 | ζ3127+ζ314 | ζ3121+ζ3110 | ζ3116+ζ3115 | ζ3122+ζ319 | ζ3128+ζ313 | ζ3125+ζ316 | orthogonal faithful |
ρ17 | 2 | 0 | ζ3120+ζ3111 | ζ3130+ζ31 | ζ3122+ζ319 | ζ3119+ζ3112 | ζ3129+ζ312 | ζ3123+ζ318 | ζ3118+ζ3113 | ζ3128+ζ313 | ζ3124+ζ317 | ζ3117+ζ3114 | ζ3127+ζ314 | ζ3125+ζ316 | ζ3116+ζ3115 | ζ3126+ζ315 | ζ3121+ζ3110 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)
G:=sub<Sym(31)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17)]])
G:=TransitiveGroup(31,2);
D31 is a maximal subgroup of
C31⋊C6 D93 C31⋊C10 D155 D217
D31 is a maximal quotient of Dic31 D93 D155 D217
Matrix representation of D31 ►in GL2(𝔽311) generated by
200 | 310 |
201 | 310 |
9 | 199 |
134 | 302 |
G:=sub<GL(2,GF(311))| [200,201,310,310],[9,134,199,302] >;
D31 in GAP, Magma, Sage, TeX
D_{31}
% in TeX
G:=Group("D31");
// GroupNames label
G:=SmallGroup(62,1);
// by ID
G=gap.SmallGroup(62,1);
# by ID
G:=PCGroup([2,-2,-31,241]);
// Polycyclic
G:=Group<a,b|a^31=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D31 in TeX
Character table of D31 in TeX