extension | φ:Q→Aut N | d | ρ | Label | ID |
C62.1(C2×C4) = C8×D31 | φ: C2×C4/C4 → C2 ⊆ Aut C62 | 248 | 2 | C62.1(C2xC4) | 496,3 |
C62.2(C2×C4) = C8⋊D31 | φ: C2×C4/C4 → C2 ⊆ Aut C62 | 248 | 2 | C62.2(C2xC4) | 496,4 |
C62.3(C2×C4) = C4×Dic31 | φ: C2×C4/C4 → C2 ⊆ Aut C62 | 496 | | C62.3(C2xC4) | 496,10 |
C62.4(C2×C4) = Dic31⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C62 | 496 | | C62.4(C2xC4) | 496,11 |
C62.5(C2×C4) = D62⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C62 | 248 | | C62.5(C2xC4) | 496,13 |
C62.6(C2×C4) = C2×C31⋊C8 | φ: C2×C4/C22 → C2 ⊆ Aut C62 | 496 | | C62.6(C2xC4) | 496,8 |
C62.7(C2×C4) = C4.Dic31 | φ: C2×C4/C22 → C2 ⊆ Aut C62 | 248 | 2 | C62.7(C2xC4) | 496,9 |
C62.8(C2×C4) = C4⋊Dic31 | φ: C2×C4/C22 → C2 ⊆ Aut C62 | 496 | | C62.8(C2xC4) | 496,12 |
C62.9(C2×C4) = C23.D31 | φ: C2×C4/C22 → C2 ⊆ Aut C62 | 248 | | C62.9(C2xC4) | 496,18 |
C62.10(C2×C4) = C22⋊C4×C31 | central extension (φ=1) | 248 | | C62.10(C2xC4) | 496,20 |
C62.11(C2×C4) = C4⋊C4×C31 | central extension (φ=1) | 496 | | C62.11(C2xC4) | 496,21 |
C62.12(C2×C4) = M4(2)×C31 | central extension (φ=1) | 248 | 2 | C62.12(C2xC4) | 496,23 |