# Extensions 1→N→G→Q→1 with N=C2 and Q=C23×C4

Direct product G=N×Q with N=C2 and Q=C23×C4
dρLabelID
C24×C464C2^4xC464,260

Non-split extensions G=N.Q with N=C2 and Q=C23×C4
extensionφ:Q→Aut NdρLabelID
C2.1(C23×C4) = C22×C22⋊C4central stem extension (φ=1)32C2.1(C2^3xC4)64,193
C2.2(C23×C4) = C22×C4⋊C4central stem extension (φ=1)64C2.2(C2^3xC4)64,194
C2.3(C23×C4) = C2×C42⋊C2central stem extension (φ=1)32C2.3(C2^3xC4)64,195
C2.4(C23×C4) = C2×C4×D4central stem extension (φ=1)32C2.4(C2^3xC4)64,196
C2.5(C23×C4) = C2×C4×Q8central stem extension (φ=1)64C2.5(C2^3xC4)64,197
C2.6(C23×C4) = C4×C4○D4central stem extension (φ=1)32C2.6(C2^3xC4)64,198
C2.7(C23×C4) = C22.11C24central stem extension (φ=1)16C2.7(C2^3xC4)64,199
C2.8(C23×C4) = C23.32C23central stem extension (φ=1)32C2.8(C2^3xC4)64,200
C2.9(C23×C4) = C23.33C23central stem extension (φ=1)32C2.9(C2^3xC4)64,201
C2.10(C23×C4) = C22×M4(2)central stem extension (φ=1)32C2.10(C2^3xC4)64,247
C2.11(C23×C4) = C2×C8○D4central stem extension (φ=1)32C2.11(C2^3xC4)64,248
C2.12(C23×C4) = Q8○M4(2)central stem extension (φ=1)164C2.12(C2^3xC4)64,249

׿
×
𝔽