p-group, metabelian, nilpotent (class 2), monomial
Aliases: Q8○M4(2), D4○M4(2), C4.17C24, C8.15C23, M4(2)○M4(2), M4(2)⋊12C22, C8○D4⋊8C2, (C2×C8)⋊9C22, C4○D4.2C4, D4.9(C2×C4), (C2×Q8).8C4, (C2×D4).10C4, Q8.10(C2×C4), M4(2)○(C4○D4), C2.12(C23×C4), C23.13(C2×C4), C4.23(C22×C4), (C2×M4(2))⋊16C2, (C2×C4).134C23, C4○D4.15C22, C22.5(C22×C4), (C22×C4).78C22, (C2×C4).32(C2×C4), (C2×C4○D4).11C2, SmallGroup(64,249)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8○M4(2)
G = < a,b,c,d | a4=d2=1, b2=c4=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=a2c >
Subgroups: 145 in 129 conjugacy classes, 119 normal (9 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C2×M4(2), C8○D4, C2×C4○D4, Q8○M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, Q8○M4(2)
(1 16 5 12)(2 9 6 13)(3 10 7 14)(4 11 8 15)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(9 13)(11 15)
G:=sub<Sym(16)| (1,16,5,12)(2,9,6,13)(3,10,7,14)(4,11,8,15), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,13)(11,15)>;
G:=Group( (1,16,5,12)(2,9,6,13)(3,10,7,14)(4,11,8,15), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,13)(11,15) );
G=PermutationGroup([[(1,16,5,12),(2,9,6,13),(3,10,7,14),(4,11,8,15)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(9,13),(11,15)]])
G:=TransitiveGroup(16,70);
Q8○M4(2) is a maximal subgroup of
M4(2).40D4 M4(2).41D4 (C2×D4).Q8 M4(2).44D4 M4(2)⋊19D4 (C2×C8)⋊D4 M4(2).46D4 M4(2).47D4 C4.(C4×D4) (C2×C8)⋊4D4 M4(2)⋊21D4 M4(2).50D4 M4(2).24C23 M4(2).25C23 2- 1+4⋊5C4 M4(2).29C23 M4(2).51D4 M4(2)○D8 M4(2).37D4 M4(2).38D4 M4(2).A4 Dic5.C24 Dic5.20C24 Dic5.22C24
C4p.C24: C4.22C25 D8⋊C23 C4.C25 M4(2)⋊26D6 M4(2)⋊28D6 C12.76C24 C40.47C23 C20.72C24 ...
Q8○M4(2) is a maximal quotient of
M4(2)○2M4(2) D4.5C42 C24.73(C2×C4) C42.257C23 C42.259C23 C42.261C23 C42.262C23 C42.678C23 C42.265C23 C42.266C23 D4×M4(2) C42.287C23 M4(2)⋊9Q8 Q8×M4(2) C42.292C23 C42.293C23 C42.294C23 D4⋊6M4(2) Q8⋊6M4(2) C42.691C23 C23⋊3M4(2) C42.693C23 C42.297C23 C42.299C23 C42.300C23 C42.301C23 C42.695C23 C42.302C23 C42.696C23 C42.305C23 C42.697C23 C42.698C23 C42.307C23 C42.308C23 C42.310C23 Dic5.C24 Dic5.20C24 Dic5.22C24
M4(2)⋊D2p: M4(2)⋊22D4 M4(2)⋊23D4 M4(2)⋊26D6 M4(2)⋊28D6 C40.47C23 C20.72C24 C28.70C24 C56.49C23 ...
C4○D4.D2p: D4○(C22⋊C8) C42.674C23 C12.76C24 C20.76C24 C28.76C24 ...
34 conjugacy classes
class | 1 | 2A | 2B | ··· | 2H | 4A | 4B | 4C | ··· | 4I | 8A | ··· | 8P |
order | 1 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | Q8○M4(2) |
kernel | Q8○M4(2) | C2×M4(2) | C8○D4 | C2×C4○D4 | C2×D4 | C2×Q8 | C4○D4 | C1 |
# reps | 1 | 6 | 8 | 1 | 6 | 2 | 8 | 2 |
Matrix representation of Q8○M4(2) ►in GL4(𝔽5) generated by
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 2 |
0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(5))| [2,0,0,0,0,2,0,0,0,0,3,0,0,0,0,3],[0,0,4,0,0,0,0,1,1,0,0,0,0,4,0,0],[0,1,0,0,3,0,0,0,0,0,0,4,0,0,2,0],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1] >;
Q8○M4(2) in GAP, Magma, Sage, TeX
Q_8\circ M_4(2)
% in TeX
G:=Group("Q8oM4(2)");
// GroupNames label
G:=SmallGroup(64,249);
// by ID
G=gap.SmallGroup(64,249);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,96,332,963,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=d^2=1,b^2=c^4=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^2*c>;
// generators/relations