# Extensions 1→N→G→Q→1 with N=C22 and Q=C22×C6

Direct product G=N×Q with N=C22 and Q=C22×C6
dρLabelID
C24×C696C2^4xC696,231

Semidirect products G=N:Q with N=C22 and Q=C22×C6
extensionφ:Q→Aut NdρLabelID
C22⋊(C22×C6) = C23×A4φ: C22×C6/C23C3 ⊆ Aut C2224C2^2:(C2^2xC6)96,228
C222(C22×C6) = D4×C2×C6φ: C22×C6/C2×C6C2 ⊆ Aut C2248C2^2:2(C2^2xC6)96,221

Non-split extensions G=N.Q with N=C22 and Q=C22×C6
extensionφ:Q→Aut NdρLabelID
C22.1(C22×C6) = C6×C4○D4φ: C22×C6/C2×C6C2 ⊆ Aut C2248C2^2.1(C2^2xC6)96,223
C22.2(C22×C6) = C3×2+ 1+4φ: C22×C6/C2×C6C2 ⊆ Aut C22244C2^2.2(C2^2xC6)96,224
C22.3(C22×C6) = C3×2- 1+4φ: C22×C6/C2×C6C2 ⊆ Aut C22484C2^2.3(C2^2xC6)96,225
C22.4(C22×C6) = C6×C22⋊C4central extension (φ=1)48C2^2.4(C2^2xC6)96,162
C22.5(C22×C6) = C6×C4⋊C4central extension (φ=1)96C2^2.5(C2^2xC6)96,163
C22.6(C22×C6) = C3×C42⋊C2central extension (φ=1)48C2^2.6(C2^2xC6)96,164
C22.7(C22×C6) = D4×C12central extension (φ=1)48C2^2.7(C2^2xC6)96,165
C22.8(C22×C6) = Q8×C12central extension (φ=1)96C2^2.8(C2^2xC6)96,166
C22.9(C22×C6) = Q8×C2×C6central extension (φ=1)96C2^2.9(C2^2xC6)96,222
C22.10(C22×C6) = C3×C22≀C2central stem extension (φ=1)24C2^2.10(C2^2xC6)96,167
C22.11(C22×C6) = C3×C4⋊D4central stem extension (φ=1)48C2^2.11(C2^2xC6)96,168
C22.12(C22×C6) = C3×C22⋊Q8central stem extension (φ=1)48C2^2.12(C2^2xC6)96,169
C22.13(C22×C6) = C3×C22.D4central stem extension (φ=1)48C2^2.13(C2^2xC6)96,170
C22.14(C22×C6) = C3×C4.4D4central stem extension (φ=1)48C2^2.14(C2^2xC6)96,171
C22.15(C22×C6) = C3×C42.C2central stem extension (φ=1)96C2^2.15(C2^2xC6)96,172
C22.16(C22×C6) = C3×C422C2central stem extension (φ=1)48C2^2.16(C2^2xC6)96,173
C22.17(C22×C6) = C3×C41D4central stem extension (φ=1)48C2^2.17(C2^2xC6)96,174
C22.18(C22×C6) = C3×C4⋊Q8central stem extension (φ=1)96C2^2.18(C2^2xC6)96,175

׿
×
𝔽