An almost simple group is a group that lies between a non-abelian simple group S an its automorphism group Aut S,
d | ρ | Label | ID | ||
---|---|---|---|---|---|
A5 | Alternating group on 5 letters; = SL2(𝔽4) = L2(5) = L2(4) = icosahedron/dodecahedron rotations; 1st non-abelian simple | 5 | 3+ | A5 | 60,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
S5 | Symmetric group on 5 letters; = PGL2(𝔽5) = Aut(A5) = 5-cell symmetries; almost simple | 5 | 4+ | S5 | 120,34 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
GL3(𝔽2) | General linear group on 𝔽23; = Aut(C23) = L3(2) = L2(7); 2nd non-abelian simple | 7 | 3 | GL(3,2) | 168,42 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
PGL2(𝔽7) | Projective linear group on 𝔽72; = GL3(𝔽2)⋊C2 = Aut(GL3(𝔽2)); almost simple | 8 | 6+ | PGL(2,7) | 336,208 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
A6 | Alternating group on 6 letters; = PSL2(𝔽9) = L2(9); 3rd non-abelian simple | 6 | 5+ | A6 | 360,118 |