metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C11⋊C5, SmallGroup(55,1)
Series: Derived ►Chief ►Lower central ►Upper central
C11 — C11⋊C5 |
Generators and relations for C11⋊C5
G = < a,b | a11=b5=1, bab-1=a3 >
Character table of C11⋊C5
class | 1 | 5A | 5B | 5C | 5D | 11A | 11B | |
size | 1 | 11 | 11 | 11 | 11 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | 1 | 1 | linear of order 5 |
ρ3 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | 1 | 1 | linear of order 5 |
ρ4 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | 1 | 1 | linear of order 5 |
ρ5 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | 1 | 1 | linear of order 5 |
ρ6 | 5 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | complex faithful |
ρ7 | 5 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11)
(2 5 6 10 4)(3 9 11 8 7)
G:=sub<Sym(11)| (1,2,3,4,5,6,7,8,9,10,11), (2,5,6,10,4)(3,9,11,8,7)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11), (2,5,6,10,4)(3,9,11,8,7) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11)], [(2,5,6,10,4),(3,9,11,8,7)]])
G:=TransitiveGroup(11,3);
C11⋊C5 is a maximal subgroup of
F11
C11⋊C5 is a maximal quotient of C11⋊C25
action | f(x) | Disc(f) |
---|---|---|
11T3 | x11-33x9+396x7-2079x5+4455x3-2673x-243 | 350·1116 |
Matrix representation of C11⋊C5 ►in GL5(𝔽3)
2 | 2 | 2 | 0 | 0 |
2 | 2 | 1 | 1 | 1 |
2 | 1 | 0 | 0 | 2 |
0 | 1 | 1 | 0 | 1 |
2 | 1 | 2 | 0 | 1 |
1 | 0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 | 1 |
0 | 0 | 1 | 1 | 2 |
0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 |
G:=sub<GL(5,GF(3))| [2,2,2,0,2,2,2,1,1,1,2,1,0,1,2,0,1,0,0,0,0,1,2,1,1],[1,0,0,0,0,0,0,0,1,0,2,2,1,1,1,0,0,1,0,0,0,1,2,1,1] >;
C11⋊C5 in GAP, Magma, Sage, TeX
C_{11}\rtimes C_5
% in TeX
G:=Group("C11:C5");
// GroupNames label
G:=SmallGroup(55,1);
// by ID
G=gap.SmallGroup(55,1);
# by ID
G:=PCGroup([2,-5,-11,81]);
// Polycyclic
G:=Group<a,b|a^11=b^5=1,b*a*b^-1=a^3>;
// generators/relations
Export
Subgroup lattice of C11⋊C5 in TeX
Character table of C11⋊C5 in TeX