p-group, cyclic, elementary abelian, simple, monomial
Aliases: C41, also denoted Z41, SmallGroup(41,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C41 |
C1 — C41 |
C1 — C41 |
C1 — C41 |
Generators and relations for C41
G = < a | a41=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)
G:=sub<Sym(41)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)]])
C41 is a maximal subgroup of
D41 C41⋊C5
41 conjugacy classes
class | 1 | 41A | ··· | 41AN |
order | 1 | 41 | ··· | 41 |
size | 1 | 1 | ··· | 1 |
41 irreducible representations
dim | 1 | 1 |
type | + | |
image | C1 | C41 |
kernel | C41 | C1 |
# reps | 1 | 40 |
Matrix representation of C41 ►in GL1(𝔽83) generated by
68 |
G:=sub<GL(1,GF(83))| [68] >;
C41 in GAP, Magma, Sage, TeX
C_{41}
% in TeX
G:=Group("C41");
// GroupNames label
G:=SmallGroup(41,1);
// by ID
G=gap.SmallGroup(41,1);
# by ID
G:=PCGroup([1,-41]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^41=1>;
// generators/relations
Export