metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D41, C41⋊C2, sometimes denoted D82 or Dih41 or Dih82, SmallGroup(82,1)
Series: Derived ►Chief ►Lower central ►Upper central
C41 — D41 |
Generators and relations for D41
G = < a,b | a41=b2=1, bab=a-1 >
Character table of D41
class | 1 | 2 | 41A | 41B | 41C | 41D | 41E | 41F | 41G | 41H | 41I | 41J | 41K | 41L | 41M | 41N | 41O | 41P | 41Q | 41R | 41S | 41T | |
size | 1 | 41 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ4133+ζ418 | ζ4129+ζ4112 | ζ4125+ζ4116 | ζ4121+ζ4120 | ζ4124+ζ4117 | ζ4128+ζ4113 | ζ4132+ζ419 | ζ4136+ζ415 | ζ4140+ζ41 | ζ4138+ζ413 | ζ4134+ζ417 | ζ4130+ζ4111 | ζ4126+ζ4115 | ζ4122+ζ4119 | ζ4123+ζ4118 | ζ4127+ζ4114 | ζ4131+ζ4110 | ζ4135+ζ416 | ζ4139+ζ412 | ζ4137+ζ414 | orthogonal faithful |
ρ4 | 2 | 0 | ζ4131+ζ4110 | ζ4126+ζ4115 | ζ4121+ζ4120 | ζ4125+ζ4116 | ζ4130+ζ4111 | ζ4135+ζ416 | ζ4140+ζ41 | ζ4137+ζ414 | ζ4132+ζ419 | ζ4127+ζ4114 | ζ4122+ζ4119 | ζ4124+ζ4117 | ζ4129+ζ4112 | ζ4134+ζ417 | ζ4139+ζ412 | ζ4138+ζ413 | ζ4133+ζ418 | ζ4128+ζ4113 | ζ4123+ζ4118 | ζ4136+ζ415 | orthogonal faithful |
ρ5 | 2 | 0 | ζ4128+ζ4113 | ζ4140+ζ41 | ζ4126+ζ4115 | ζ4129+ζ4112 | ζ4139+ζ412 | ζ4125+ζ4116 | ζ4130+ζ4111 | ζ4138+ζ413 | ζ4124+ζ4117 | ζ4131+ζ4110 | ζ4137+ζ414 | ζ4123+ζ4118 | ζ4132+ζ419 | ζ4136+ζ415 | ζ4122+ζ4119 | ζ4133+ζ418 | ζ4135+ζ416 | ζ4121+ζ4120 | ζ4134+ζ417 | ζ4127+ζ4114 | orthogonal faithful |
ρ6 | 2 | 0 | ζ4136+ζ415 | ζ4128+ζ4113 | ζ4131+ζ4110 | ζ4133+ζ418 | ζ4126+ζ4115 | ζ4138+ζ413 | ζ4121+ζ4120 | ζ4139+ζ412 | ζ4125+ζ4116 | ζ4134+ζ417 | ζ4130+ζ4111 | ζ4129+ζ4112 | ζ4135+ζ416 | ζ4124+ζ4117 | ζ4140+ζ41 | ζ4122+ζ4119 | ζ4137+ζ414 | ζ4127+ζ4114 | ζ4132+ζ419 | ζ4123+ζ4118 | orthogonal faithful |
ρ7 | 2 | 0 | ζ4122+ζ4119 | ζ4133+ζ418 | ζ4138+ζ413 | ζ4127+ζ4114 | ζ4125+ζ4116 | ζ4136+ζ415 | ζ4135+ζ416 | ζ4124+ζ4117 | ζ4128+ζ4113 | ζ4139+ζ412 | ζ4132+ζ419 | ζ4121+ζ4120 | ζ4131+ζ4110 | ζ4140+ζ41 | ζ4129+ζ4112 | ζ4123+ζ4118 | ζ4134+ζ417 | ζ4137+ζ414 | ζ4126+ζ4115 | ζ4130+ζ4111 | orthogonal faithful |
ρ8 | 2 | 0 | ζ4127+ζ4114 | ζ4121+ζ4120 | ζ4128+ζ4113 | ζ4135+ζ416 | ζ4140+ζ41 | ζ4133+ζ418 | ζ4126+ζ4115 | ζ4122+ζ4119 | ζ4129+ζ4112 | ζ4136+ζ415 | ζ4139+ζ412 | ζ4132+ζ419 | ζ4125+ζ4116 | ζ4123+ζ4118 | ζ4130+ζ4111 | ζ4137+ζ414 | ζ4138+ζ413 | ζ4131+ζ4110 | ζ4124+ζ4117 | ζ4134+ζ417 | orthogonal faithful |
ρ9 | 2 | 0 | ζ4138+ζ413 | ζ4125+ζ4116 | ζ4135+ζ416 | ζ4128+ζ4113 | ζ4132+ζ419 | ζ4131+ζ4110 | ζ4129+ζ4112 | ζ4134+ζ417 | ζ4126+ζ4115 | ζ4137+ζ414 | ζ4123+ζ4118 | ζ4140+ζ41 | ζ4121+ζ4120 | ζ4139+ζ412 | ζ4124+ζ4117 | ζ4136+ζ415 | ζ4127+ζ4114 | ζ4133+ζ418 | ζ4130+ζ4111 | ζ4122+ζ4119 | orthogonal faithful |
ρ10 | 2 | 0 | ζ4121+ζ4120 | ζ4130+ζ4111 | ζ4140+ζ41 | ζ4132+ζ419 | ζ4122+ζ4119 | ζ4129+ζ4112 | ζ4139+ζ412 | ζ4133+ζ418 | ζ4123+ζ4118 | ζ4128+ζ4113 | ζ4138+ζ413 | ζ4134+ζ417 | ζ4124+ζ4117 | ζ4127+ζ4114 | ζ4137+ζ414 | ζ4135+ζ416 | ζ4125+ζ4116 | ζ4126+ζ4115 | ζ4136+ζ415 | ζ4131+ζ4110 | orthogonal faithful |
ρ11 | 2 | 0 | ζ4140+ζ41 | ζ4122+ζ4119 | ζ4139+ζ412 | ζ4123+ζ4118 | ζ4138+ζ413 | ζ4124+ζ4117 | ζ4137+ζ414 | ζ4125+ζ4116 | ζ4136+ζ415 | ζ4126+ζ4115 | ζ4135+ζ416 | ζ4127+ζ4114 | ζ4134+ζ417 | ζ4128+ζ4113 | ζ4133+ζ418 | ζ4129+ζ4112 | ζ4132+ζ419 | ζ4130+ζ4111 | ζ4131+ζ4110 | ζ4121+ζ4120 | orthogonal faithful |
ρ12 | 2 | 0 | ζ4123+ζ4118 | ζ4127+ζ4114 | ζ4136+ζ415 | ζ4137+ζ414 | ζ4128+ζ4113 | ζ4122+ζ4119 | ζ4131+ζ4110 | ζ4140+ζ41 | ζ4133+ζ418 | ζ4124+ζ4117 | ζ4126+ζ4115 | ζ4135+ζ416 | ζ4138+ζ413 | ζ4129+ζ4112 | ζ4121+ζ4120 | ζ4130+ζ4111 | ζ4139+ζ412 | ζ4134+ζ417 | ζ4125+ζ4116 | ζ4132+ζ419 | orthogonal faithful |
ρ13 | 2 | 0 | ζ4137+ζ414 | ζ4135+ζ416 | ζ4133+ζ418 | ζ4131+ζ4110 | ζ4129+ζ4112 | ζ4127+ζ4114 | ζ4125+ζ4116 | ζ4123+ζ4118 | ζ4121+ζ4120 | ζ4122+ζ4119 | ζ4124+ζ4117 | ζ4126+ζ4115 | ζ4128+ζ4113 | ζ4130+ζ4111 | ζ4132+ζ419 | ζ4134+ζ417 | ζ4136+ζ415 | ζ4138+ζ413 | ζ4140+ζ41 | ζ4139+ζ412 | orthogonal faithful |
ρ14 | 2 | 0 | ζ4139+ζ412 | ζ4138+ζ413 | ζ4137+ζ414 | ζ4136+ζ415 | ζ4135+ζ416 | ζ4134+ζ417 | ζ4133+ζ418 | ζ4132+ζ419 | ζ4131+ζ4110 | ζ4130+ζ4111 | ζ4129+ζ4112 | ζ4128+ζ4113 | ζ4127+ζ4114 | ζ4126+ζ4115 | ζ4125+ζ4116 | ζ4124+ζ4117 | ζ4123+ζ4118 | ζ4122+ζ4119 | ζ4121+ζ4120 | ζ4140+ζ41 | orthogonal faithful |
ρ15 | 2 | 0 | ζ4132+ζ419 | ζ4134+ζ417 | ζ4123+ζ4118 | ζ4139+ζ412 | ζ4127+ζ4114 | ζ4130+ζ4111 | ζ4136+ζ415 | ζ4121+ζ4120 | ζ4137+ζ414 | ζ4129+ζ4112 | ζ4128+ζ4113 | ζ4138+ζ413 | ζ4122+ζ4119 | ζ4135+ζ416 | ζ4131+ζ4110 | ζ4126+ζ4115 | ζ4140+ζ41 | ζ4124+ζ4117 | ζ4133+ζ418 | ζ4125+ζ4116 | orthogonal faithful |
ρ16 | 2 | 0 | ζ4124+ζ4117 | ζ4136+ζ415 | ζ4134+ζ417 | ζ4122+ζ4119 | ζ4131+ζ4110 | ζ4139+ζ412 | ζ4127+ζ4114 | ζ4126+ζ4115 | ζ4138+ζ413 | ζ4132+ζ419 | ζ4121+ζ4120 | ζ4133+ζ418 | ζ4137+ζ414 | ζ4125+ζ4116 | ζ4128+ζ4113 | ζ4140+ζ41 | ζ4130+ζ4111 | ζ4123+ζ4118 | ζ4135+ζ416 | ζ4129+ζ4112 | orthogonal faithful |
ρ17 | 2 | 0 | ζ4135+ζ416 | ζ4132+ζ419 | ζ4129+ζ4112 | ζ4126+ζ4115 | ζ4123+ζ4118 | ζ4121+ζ4120 | ζ4124+ζ4117 | ζ4127+ζ4114 | ζ4130+ζ4111 | ζ4133+ζ418 | ζ4136+ζ415 | ζ4139+ζ412 | ζ4140+ζ41 | ζ4137+ζ414 | ζ4134+ζ417 | ζ4131+ζ4110 | ζ4128+ζ4113 | ζ4125+ζ4116 | ζ4122+ζ4119 | ζ4138+ζ413 | orthogonal faithful |
ρ18 | 2 | 0 | ζ4134+ζ417 | ζ4131+ζ4110 | ζ4127+ζ4114 | ζ4138+ζ413 | ζ4121+ζ4120 | ζ4137+ζ414 | ζ4128+ζ4113 | ζ4130+ζ4111 | ζ4135+ζ416 | ζ4123+ζ4118 | ζ4140+ζ41 | ζ4125+ζ4116 | ζ4133+ζ418 | ζ4132+ζ419 | ζ4126+ζ4115 | ζ4139+ζ412 | ζ4122+ζ4119 | ζ4136+ζ415 | ζ4129+ζ4112 | ζ4124+ζ4117 | orthogonal faithful |
ρ19 | 2 | 0 | ζ4125+ζ4116 | ζ4124+ζ4117 | ζ4132+ζ419 | ζ4140+ζ41 | ζ4134+ζ417 | ζ4126+ζ4115 | ζ4123+ζ4118 | ζ4131+ζ4110 | ζ4139+ζ412 | ζ4135+ζ416 | ζ4127+ζ4114 | ζ4122+ζ4119 | ζ4130+ζ4111 | ζ4138+ζ413 | ζ4136+ζ415 | ζ4128+ζ4113 | ζ4121+ζ4120 | ζ4129+ζ4112 | ζ4137+ζ414 | ζ4133+ζ418 | orthogonal faithful |
ρ20 | 2 | 0 | ζ4126+ζ4115 | ζ4139+ζ412 | ζ4130+ζ4111 | ζ4124+ζ4117 | ζ4137+ζ414 | ζ4132+ζ419 | ζ4122+ζ4119 | ζ4135+ζ416 | ζ4134+ζ417 | ζ4121+ζ4120 | ζ4133+ζ418 | ζ4136+ζ415 | ζ4123+ζ4118 | ζ4131+ζ4110 | ζ4138+ζ413 | ζ4125+ζ4116 | ζ4129+ζ4112 | ζ4140+ζ41 | ζ4127+ζ4114 | ζ4128+ζ4113 | orthogonal faithful |
ρ21 | 2 | 0 | ζ4129+ζ4112 | ζ4123+ζ4118 | ζ4124+ζ4117 | ζ4130+ζ4111 | ζ4136+ζ415 | ζ4140+ζ41 | ζ4134+ζ417 | ζ4128+ζ4113 | ζ4122+ζ4119 | ζ4125+ζ4116 | ζ4131+ζ4110 | ζ4137+ζ414 | ζ4139+ζ412 | ζ4133+ζ418 | ζ4127+ζ4114 | ζ4121+ζ4120 | ζ4126+ζ4115 | ζ4132+ζ419 | ζ4138+ζ413 | ζ4135+ζ416 | orthogonal faithful |
ρ22 | 2 | 0 | ζ4130+ζ4111 | ζ4137+ζ414 | ζ4122+ζ4119 | ζ4134+ζ417 | ζ4133+ζ418 | ζ4123+ζ4118 | ζ4138+ζ413 | ζ4129+ζ4112 | ζ4127+ζ4114 | ζ4140+ζ41 | ζ4125+ζ4116 | ζ4131+ζ4110 | ζ4136+ζ415 | ζ4121+ζ4120 | ζ4135+ζ416 | ζ4132+ζ419 | ζ4124+ζ4117 | ζ4139+ζ412 | ζ4128+ζ4113 | ζ4126+ζ4115 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)
G:=sub<Sym(41)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22)]])
D41 is a maximal subgroup of
C41⋊C4 D123 C41⋊C10 D205
D41 is a maximal quotient of Dic41 D123 D205
Matrix representation of D41 ►in GL2(𝔽83) generated by
81 | 82 |
14 | 48 |
40 | 43 |
13 | 43 |
G:=sub<GL(2,GF(83))| [81,14,82,48],[40,13,43,43] >;
D41 in GAP, Magma, Sage, TeX
D_{41}
% in TeX
G:=Group("D41");
// GroupNames label
G:=SmallGroup(82,1);
// by ID
G=gap.SmallGroup(82,1);
# by ID
G:=PCGroup([2,-2,-41,321]);
// Polycyclic
G:=Group<a,b|a^41=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D41 in TeX
Character table of D41 in TeX