metacyclic, supersoluble, monomial, Z-group
Aliases: F7, AGL1(𝔽7), C7⋊C6, D7⋊C3, C7⋊C3⋊C2, Aut(D7), Hol(C7), SmallGroup(42,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C7⋊C3 — F7 |
C7 — F7 |
Generators and relations for F7
G = < a,b | a7=b6=1, bab-1=a5 >
Character table of F7
class | 1 | 2 | 3A | 3B | 6A | 6B | 7 | |
size | 1 | 7 | 7 | 7 | 7 | 7 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | linear of order 3 |
ρ5 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | linear of order 6 |
ρ6 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | linear of order 6 |
ρ7 | 6 | 0 | 0 | 0 | 0 | 0 | -1 | orthogonal faithful |
(1 2 3 4 5 6 7)
(2 4 3 7 5 6)
G:=sub<Sym(7)| (1,2,3,4,5,6,7), (2,4,3,7,5,6)>;
G:=Group( (1,2,3,4,5,6,7), (2,4,3,7,5,6) );
G=PermutationGroup([[(1,2,3,4,5,6,7)], [(2,4,3,7,5,6)]])
G:=TransitiveGroup(7,4);
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 8)(2 11 3 14 5 13)(4 10 7 12 6 9)
G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,8)(2,11,3,14,5,13)(4,10,7,12,6,9)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,8)(2,11,3,14,5,13)(4,10,7,12,6,9) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,8),(2,11,3,14,5,13),(4,10,7,12,6,9)]])
G:=TransitiveGroup(14,4);
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 10 19)(2 13 21 7 14 17)(3 9 16 6 11 15)(4 12 18 5 8 20)
G:=sub<Sym(21)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,10,19)(2,13,21,7,14,17)(3,9,16,6,11,15)(4,12,18,5,8,20)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,10,19)(2,13,21,7,14,17)(3,9,16,6,11,15)(4,12,18,5,8,20) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,10,19),(2,13,21,7,14,17),(3,9,16,6,11,15),(4,12,18,5,8,20)]])
G:=TransitiveGroup(21,4);
F7 is a maximal subgroup of
C3⋊F7 D7⋊A4 C5⋊F7 C49⋊C6 C7⋊5F7 C7⋊3F7 C7⋊4F7 C7⋊F7 C72⋊C6 PGL2(𝔽7) C11⋊F7
F7 is a maximal quotient of
C7⋊C12 C7⋊C18 C3⋊F7 D7⋊A4 C5⋊F7 C49⋊C6 C7⋊5F7 C7⋊3F7 C7⋊4F7 C7⋊F7 C72⋊C6 C11⋊F7
action | f(x) | Disc(f) |
---|---|---|
7T4 | x7-2 | -26·77 |
14T4 | x14-4x13+8x12-14x11+26x10-34x9+26x8-14x7+13x6+4x5-22x4+14x3+x2-4x+8 | -228·322·78·112·3832 |
Matrix representation of F7 ►in GL6(ℤ)
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | -1 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [0,0,0,0,0,-1,1,0,0,0,0,-1,0,1,0,0,0,-1,0,0,1,0,0,-1,0,0,0,1,0,-1,0,0,0,0,1,-1],[1,0,0,0,-1,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0,0,1,0,-1,0,0,0,0,0,-1,1,0,1,0,0,-1,0] >;
F7 in GAP, Magma, Sage, TeX
F_7
% in TeX
G:=Group("F7");
// GroupNames label
G:=SmallGroup(42,1);
// by ID
G=gap.SmallGroup(42,1);
# by ID
G:=PCGroup([3,-2,-3,-7,326,59]);
// Polycyclic
G:=Group<a,b|a^7=b^6=1,b*a*b^-1=a^5>;
// generators/relations
Export