Copied to
clipboard

G = C123D4order 96 = 25·3

3rd semidirect product of C12 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C123D4, Dic31D4, C23.15D6, (C2×D4)⋊6S3, (C6×D4)⋊4C2, (C2×D12)⋊9C2, C32(C41D4), C41(C3⋊D4), (C2×C4).52D6, C6.52(C2×D4), C2.28(S3×D4), (C4×Dic3)⋊6C2, (C2×C6).55C23, (C2×C12).35C22, C22.62(C22×S3), (C22×C6).22C22, (C22×S3).12C22, (C2×Dic3).39C22, (C2×C3⋊D4)⋊7C2, C2.16(C2×C3⋊D4), SmallGroup(96,147)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C123D4
C1C3C6C2×C6C22×S3C2×D12 — C123D4
C3C2×C6 — C123D4
C1C22C2×D4

Generators and relations for C123D4
 G = < a,b,c | a12=b4=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 290 in 108 conjugacy classes, 37 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C2×D4, C2×D4, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C41D4, C4×Dic3, C2×D12, C2×C3⋊D4, C6×D4, C123D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C41D4, S3×D4, C2×C3⋊D4, C123D4

Character table of C123D4

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F6A6B6C6D6E6F6G12A12B
 size 11114412122226666222444444
ρ1111111111111111111111111    trivial
ρ211111-1-111-1-11-11-11111-1-11-1-1    linear of order 2
ρ311111-11-11-1-1-11-111111-1-11-1-1    linear of order 2
ρ4111111-1-1111-1-1-1-1111111111    linear of order 2
ρ51111-11-111-1-1-11-11111-111-1-1-1    linear of order 2
ρ61111-1-111111-1-1-1-1111-1-1-1-111    linear of order 2
ρ71111-1-1-1-11111111111-1-1-1-111    linear of order 2
ρ81111-111-11-1-11-11-1111-111-1-1-1    linear of order 2
ρ92-22-20000200020-2-22-2000000    orthogonal lifted from D4
ρ102-2-220000200-20202-2-2000000    orthogonal lifted from D4
ρ112-22-200002000-202-22-2000000    orthogonal lifted from D4
ρ1222-2-2000022-20000-2-220000-22    orthogonal lifted from D4
ρ1322222-200-1-2-20000-1-1-1-111-111    orthogonal lifted from D6
ρ1422-2-200002-220000-2-2200002-2    orthogonal lifted from D4
ρ1522222200-1220000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ162-2-22000020020-202-2-2000000    orthogonal lifted from D4
ρ172222-2-200-1220000-1-1-11111-1-1    orthogonal lifted from D6
ρ182222-2200-1-2-20000-1-1-11-1-1111    orthogonal lifted from D6
ρ1922-2-20000-12-2000011-1--3--3-3-31-1    complex lifted from C3⋊D4
ρ2022-2-20000-12-2000011-1-3-3--3--31-1    complex lifted from C3⋊D4
ρ2122-2-20000-1-22000011-1-3--3-3--3-11    complex lifted from C3⋊D4
ρ2222-2-20000-1-22000011-1--3-3--3-3-11    complex lifted from C3⋊D4
ρ234-4-440000-2000000-222000000    orthogonal lifted from S3×D4
ρ244-44-40000-20000002-22000000    orthogonal lifted from S3×D4

Smallest permutation representation of C123D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 47 34 24)(2 40 35 17)(3 45 36 22)(4 38 25 15)(5 43 26 20)(6 48 27 13)(7 41 28 18)(8 46 29 23)(9 39 30 16)(10 44 31 21)(11 37 32 14)(12 42 33 19)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 46)(14 45)(15 44)(16 43)(17 42)(18 41)(19 40)(20 39)(21 38)(22 37)(23 48)(24 47)(25 31)(26 30)(27 29)(32 36)(33 35)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,34,24)(2,40,35,17)(3,45,36,22)(4,38,25,15)(5,43,26,20)(6,48,27,13)(7,41,28,18)(8,46,29,23)(9,39,30,16)(10,44,31,21)(11,37,32,14)(12,42,33,19), (2,12)(3,11)(4,10)(5,9)(6,8)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,40)(20,39)(21,38)(22,37)(23,48)(24,47)(25,31)(26,30)(27,29)(32,36)(33,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,34,24)(2,40,35,17)(3,45,36,22)(4,38,25,15)(5,43,26,20)(6,48,27,13)(7,41,28,18)(8,46,29,23)(9,39,30,16)(10,44,31,21)(11,37,32,14)(12,42,33,19), (2,12)(3,11)(4,10)(5,9)(6,8)(13,46)(14,45)(15,44)(16,43)(17,42)(18,41)(19,40)(20,39)(21,38)(22,37)(23,48)(24,47)(25,31)(26,30)(27,29)(32,36)(33,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47,34,24),(2,40,35,17),(3,45,36,22),(4,38,25,15),(5,43,26,20),(6,48,27,13),(7,41,28,18),(8,46,29,23),(9,39,30,16),(10,44,31,21),(11,37,32,14),(12,42,33,19)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,46),(14,45),(15,44),(16,43),(17,42),(18,41),(19,40),(20,39),(21,38),(22,37),(23,48),(24,47),(25,31),(26,30),(27,29),(32,36),(33,35)]])

C123D4 is a maximal subgroup of
C23.2D12  D121D4  Dic3.SD16  Dic62D4  C4⋊C4.D6  D123D4  Dic3⋊D8  C245D4  C2411D4  Dic35SD16  C2415D4  C249D4  D1218D4  2+ 1+46S3  C42.228D6  Dic624D4  C42.114D6  C42.116D6  C248D6  C24.45D6  C24.47D6  C12⋊(C4○D4)  Dic620D4  C6.382+ 1+4  D1219D4  C6.442+ 1+4  C6.472+ 1+4  C6.482+ 1+4  C6.662+ 1+4  C6.672+ 1+4  C6.682+ 1+4  C42.233D6  C4220D6  C42.143D6  S3×C41D4  C4228D6  Dic611D4  D4×C3⋊D4  C24.52D6  C6.1462+ 1+4  (C2×C12)⋊17D4  C6.1482+ 1+4  C36⋊D4  C12⋊D12  C62.84C23  C62.121C23  C62.258C23  C12⋊D20  C6010D4  Dic155D4  C603D4
C123D4 is a maximal quotient of
C24.18D6  C24.24D6  C233D12  (C4×Dic3)⋊8C4  (C2×D12)⋊10C4  (C2×C12).290D4  C42.64D6  C42.214D6  C42.65D6  C12⋊D8  C42.74D6  C124SD16  C126SD16  C42.80D6  C123Q16  C245D4  C2411D4  C24.22D4  C24.31D4  C24.43D4  C2415D4  C249D4  C24.26D4  C24.37D4  C24.28D4  C24.30D6  C24.32D6  C36⋊D4  C12⋊D12  C62.84C23  C62.121C23  C62.258C23  C12⋊D20  C6010D4  Dic155D4  C603D4

Matrix representation of C123D4 in GL4(𝔽13) generated by

01200
1000
00121
00120
,
01200
1000
00411
0029
,
1000
01200
0001
0010
G:=sub<GL(4,GF(13))| [0,1,0,0,12,0,0,0,0,0,12,12,0,0,1,0],[0,1,0,0,12,0,0,0,0,0,4,2,0,0,11,9],[1,0,0,0,0,12,0,0,0,0,0,1,0,0,1,0] >;

C123D4 in GAP, Magma, Sage, TeX

C_{12}\rtimes_3D_4
% in TeX

G:=Group("C12:3D4");
// GroupNames label

G:=SmallGroup(96,147);
// by ID

G=gap.SmallGroup(96,147);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,103,218,188,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C123D4 in TeX

׿
×
𝔽