metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊3D4, C12⋊2D4, C23.13D6, (C6×D4)⋊3C2, (C2×D4)⋊4S3, C4⋊2(C3⋊D4), C3⋊4(C4⋊D4), (C2×C4).51D6, C6.50(C2×D4), C2.26(S3×D4), C4⋊Dic3⋊14C2, C6.31(C4○D4), (C2×C6).53C23, C6.D4⋊11C2, (C2×C12).34C22, C2.17(D4⋊2S3), (C22×C6).20C22, C22.60(C22×S3), (C22×S3).26C22, (C2×Dic3).19C22, (S3×C2×C4)⋊2C2, (C2×C3⋊D4)⋊5C2, C2.14(C2×C3⋊D4), SmallGroup(96,145)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊3D4
G = < a,b,c,d | a6=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >
Subgroups: 226 in 94 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4⋊D4, C4⋊Dic3, C6.D4, S3×C2×C4, C2×C3⋊D4, C6×D4, D6⋊3D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, S3×D4, D4⋊2S3, C2×C3⋊D4, D6⋊3D4
Character table of D6⋊3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | -√-3 | √-3 | √-3 | 1 | -1 | complex lifted from C3⋊D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | √-3 | -√-3 | -√-3 | 1 | -1 | complex lifted from C3⋊D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | -√-3 | √-3 | -√-3 | -1 | 1 | complex lifted from C3⋊D4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | √-3 | -√-3 | √-3 | -1 | 1 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2i | -2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2i | 2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(8 12)(9 11)(13 14)(15 18)(16 17)(19 21)(22 24)(25 29)(26 28)(31 36)(32 35)(33 34)(37 38)(39 42)(40 41)(43 45)(46 48)
(1 41 17 34)(2 42 18 35)(3 37 13 36)(4 38 14 31)(5 39 15 32)(6 40 16 33)(7 27 44 20)(8 28 45 21)(9 29 46 22)(10 30 47 23)(11 25 48 24)(12 26 43 19)
(1 46)(2 47)(3 48)(4 43)(5 44)(6 45)(7 15)(8 16)(9 17)(10 18)(11 13)(12 14)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)(22,24)(25,29)(26,28)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)(43,45)(46,48), (1,41,17,34)(2,42,18,35)(3,37,13,36)(4,38,14,31)(5,39,15,32)(6,40,16,33)(7,27,44,20)(8,28,45,21)(9,29,46,22)(10,30,47,23)(11,25,48,24)(12,26,43,19), (1,46)(2,47)(3,48)(4,43)(5,44)(6,45)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)(22,24)(25,29)(26,28)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)(43,45)(46,48), (1,41,17,34)(2,42,18,35)(3,37,13,36)(4,38,14,31)(5,39,15,32)(6,40,16,33)(7,27,44,20)(8,28,45,21)(9,29,46,22)(10,30,47,23)(11,25,48,24)(12,26,43,19), (1,46)(2,47)(3,48)(4,43)(5,44)(6,45)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(8,12),(9,11),(13,14),(15,18),(16,17),(19,21),(22,24),(25,29),(26,28),(31,36),(32,35),(33,34),(37,38),(39,42),(40,41),(43,45),(46,48)], [(1,41,17,34),(2,42,18,35),(3,37,13,36),(4,38,14,31),(5,39,15,32),(6,40,16,33),(7,27,44,20),(8,28,45,21),(9,29,46,22),(10,30,47,23),(11,25,48,24),(12,26,43,19)], [(1,46),(2,47),(3,48),(4,43),(5,44),(6,45),(7,15),(8,16),(9,17),(10,18),(11,13),(12,14),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42)]])
D6⋊3D4 is a maximal subgroup of
D6.D8 D6⋊D8 D6.SD16 D6⋊SD16 D6⋊C8⋊11C2 C3⋊C8⋊1D4 C3⋊C8⋊D4 C24⋊1C4⋊C2 D12⋊D4 D6⋊3D8 Dic6⋊D4 C24⋊12D4 D6⋊8SD16 C24⋊14D4 D12⋊7D4 C24⋊8D4 C42.228D6 D12⋊24D4 C42.229D6 C42.113D6 C42.115D6 C42.116D6 C42.117D6 C24⋊7D6 C24.44D6 C24.46D6 C24.47D6 S3×C4⋊D4 C4⋊C4⋊21D6 C6.382+ 1+4 C6.722- 1+4 C6.732- 1+4 D12⋊20D4 C6.422+ 1+4 C6.432+ 1+4 C6.442+ 1+4 C6.452+ 1+4 C6.1152+ 1+4 C6.472+ 1+4 C6.482+ 1+4 C6.492+ 1+4 C6.612+ 1+4 C6.632+ 1+4 C6.642+ 1+4 C6.692+ 1+4 D12⋊10D4 Dic6⋊10D4 C42.234D6 C42.144D6 C42.238D6 D12⋊11D4 Dic6⋊11D4 C42.168D6 D4×C3⋊D4 C24.52D6 C24.53D6 (C2×D4)⋊43D6 C6.1072- 1+4 C6.1082- 1+4 C6.1482+ 1+4 C36⋊2D4 D6⋊2D12 C12⋊2D12 C62.100C23 C62.112C23 C62.256C23 C60⋊4D4 C12⋊2D20 D30⋊6D4 (S3×C10)⋊D4 C60⋊2D4
D6⋊3D4 is a maximal quotient of
C24.14D6 C24.17D6 C24.23D6 C24.27D6 C12⋊(C4⋊C4) (C2×Dic3).Q8 C4⋊(D6⋊C4) (C2×C12).289D4 C42.61D6 D12.23D4 C12⋊2D8 Dic6⋊9D4 C12⋊5SD16 C12⋊Q16 D6⋊3D8 C24⋊12D4 C24.23D4 C24⋊14D4 C24⋊8D4 C24.44D4 D6⋊3Q16 C24.36D4 C24.29D4 C24.30D6 C24.31D6 C24.32D6 C36⋊2D4 D6⋊2D12 C12⋊2D12 C62.100C23 C62.112C23 C62.256C23 C60⋊4D4 C12⋊2D20 D30⋊6D4 (S3×C10)⋊D4 C60⋊2D4
Matrix representation of D6⋊3D4 ►in GL4(𝔽13) generated by
0 | 1 | 0 | 0 |
12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 12 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 0 | 8 |
2 | 9 | 0 | 0 |
4 | 11 | 0 | 0 |
0 | 0 | 0 | 8 |
0 | 0 | 5 | 0 |
G:=sub<GL(4,GF(13))| [0,12,0,0,1,1,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,12,12,0,0,0,0,12,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,5,0,0,0,0,8],[2,4,0,0,9,11,0,0,0,0,0,5,0,0,8,0] >;
D6⋊3D4 in GAP, Magma, Sage, TeX
D_6\rtimes_3D_4
% in TeX
G:=Group("D6:3D4");
// GroupNames label
G:=SmallGroup(96,145);
// by ID
G=gap.SmallGroup(96,145);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations
Export