metabelian, soluble, monomial, A-group
Aliases: F8, AGL1(𝔽8), C23⋊C7, SmallGroup(56,11)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — F8 |
Generators and relations for F8
G = < a,b,c,d | a2=b2=c2=d7=1, ab=ba, ac=ca, dad-1=cb=bc, dbd-1=a, dcd-1=b >
Character table of F8
class | 1 | 2 | 7A | 7B | 7C | 7D | 7E | 7F | |
size | 1 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ74 | ζ76 | ζ72 | ζ75 | ζ7 | ζ73 | linear of order 7 |
ρ3 | 1 | 1 | ζ72 | ζ73 | ζ7 | ζ76 | ζ74 | ζ75 | linear of order 7 |
ρ4 | 1 | 1 | ζ75 | ζ74 | ζ76 | ζ7 | ζ73 | ζ72 | linear of order 7 |
ρ5 | 1 | 1 | ζ73 | ζ7 | ζ75 | ζ72 | ζ76 | ζ74 | linear of order 7 |
ρ6 | 1 | 1 | ζ7 | ζ75 | ζ74 | ζ73 | ζ72 | ζ76 | linear of order 7 |
ρ7 | 1 | 1 | ζ76 | ζ72 | ζ73 | ζ74 | ζ75 | ζ7 | linear of order 7 |
ρ8 | 7 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 7)(2 3)(4 6)(5 8)
(1 8)(2 6)(3 4)(5 7)
(1 2)(3 7)(4 5)(6 8)
(2 3 4 5 6 7 8)
G:=sub<Sym(8)| (1,7)(2,3)(4,6)(5,8), (1,8)(2,6)(3,4)(5,7), (1,2)(3,7)(4,5)(6,8), (2,3,4,5,6,7,8)>;
G:=Group( (1,7)(2,3)(4,6)(5,8), (1,8)(2,6)(3,4)(5,7), (1,2)(3,7)(4,5)(6,8), (2,3,4,5,6,7,8) );
G=PermutationGroup([[(1,7),(2,3),(4,6),(5,8)], [(1,8),(2,6),(3,4),(5,7)], [(1,2),(3,7),(4,5),(6,8)], [(2,3,4,5,6,7,8)]])
G:=TransitiveGroup(8,25);
(2 13)(4 8)(5 9)(6 10)
(3 14)(5 9)(6 10)(7 11)
(1 12)(4 8)(6 10)(7 11)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
G:=sub<Sym(14)| (2,13)(4,8)(5,9)(6,10), (3,14)(5,9)(6,10)(7,11), (1,12)(4,8)(6,10)(7,11), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)>;
G:=Group( (2,13)(4,8)(5,9)(6,10), (3,14)(5,9)(6,10)(7,11), (1,12)(4,8)(6,10)(7,11), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14) );
G=PermutationGroup([[(2,13),(4,8),(5,9),(6,10)], [(3,14),(5,9),(6,10),(7,11)], [(1,12),(4,8),(6,10),(7,11)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)]])
G:=TransitiveGroup(14,6);
(2 25)(3 10)(4 27)(5 17)(6 18)(7 14)(9 21)(11 16)(12 28)(13 22)(15 26)(19 23)
(1 8)(3 26)(4 11)(5 28)(6 18)(7 19)(10 15)(12 17)(13 22)(14 23)(16 27)(20 24)
(1 20)(2 9)(4 27)(5 12)(6 22)(7 19)(8 24)(11 16)(13 18)(14 23)(17 28)(21 25)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
G:=sub<Sym(28)| (2,25)(3,10)(4,27)(5,17)(6,18)(7,14)(9,21)(11,16)(12,28)(13,22)(15,26)(19,23), (1,8)(3,26)(4,11)(5,28)(6,18)(7,19)(10,15)(12,17)(13,22)(14,23)(16,27)(20,24), (1,20)(2,9)(4,27)(5,12)(6,22)(7,19)(8,24)(11,16)(13,18)(14,23)(17,28)(21,25), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)>;
G:=Group( (2,25)(3,10)(4,27)(5,17)(6,18)(7,14)(9,21)(11,16)(12,28)(13,22)(15,26)(19,23), (1,8)(3,26)(4,11)(5,28)(6,18)(7,19)(10,15)(12,17)(13,22)(14,23)(16,27)(20,24), (1,20)(2,9)(4,27)(5,12)(6,22)(7,19)(8,24)(11,16)(13,18)(14,23)(17,28)(21,25), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28) );
G=PermutationGroup([[(2,25),(3,10),(4,27),(5,17),(6,18),(7,14),(9,21),(11,16),(12,28),(13,22),(15,26),(19,23)], [(1,8),(3,26),(4,11),(5,28),(6,18),(7,19),(10,15),(12,17),(13,22),(14,23),(16,27),(20,24)], [(1,20),(2,9),(4,27),(5,12),(6,22),(7,19),(8,24),(11,16),(13,18),(14,23),(17,28),(21,25)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)]])
G:=TransitiveGroup(28,11);
F8 is a maximal subgroup of
AΓL1(𝔽8) C43⋊C7 C23.F8 C26⋊C7 C23⋊F8
F8 is a maximal quotient of C7.F8 C43⋊C7 C23.F8 C26⋊C7 C23⋊F8
action | f(x) | Disc(f) |
---|---|---|
8T25 | x8-2x7-20x6+10x5+102x4+26x3-112x2-50x+7 | 214·174·298 |
14T6 | x14+28x12+56x10-245x8-322x6+406x4-56x2-1 | 214·724·318·674·8814 |
Matrix representation of F8 ►in GL7(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(7,Integers())| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
F8 in GAP, Magma, Sage, TeX
F_8
% in TeX
G:=Group("F8");
// GroupNames label
G:=SmallGroup(56,11);
// by ID
G=gap.SmallGroup(56,11);
# by ID
G:=PCGroup([4,-7,-2,2,2,113,338,563]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^7=1,a*b=b*a,a*c=c*a,d*a*d^-1=c*b=b*c,d*b*d^-1=a,d*c*d^-1=b>;
// generators/relations
Export