non-abelian, soluble, monomial, A-group
Aliases: AΓL1(𝔽8), F8⋊C3, C23⋊(C7⋊C3), Aut(F8), SmallGroup(168,43)
Series: Derived ►Chief ►Lower central ►Upper central
F8 — AΓL1(𝔽8) |
Generators and relations for AΓL1(𝔽8)
G = < a,b,c,d,e | a2=b2=c2=d7=e3=1, ab=ba, eae-1=ac=ca, dad-1=cb=bc, dbd-1=ebe-1=a, dcd-1=b, ece-1=abc, ede-1=d4 >
Character table of AΓL1(𝔽8)
class | 1 | 2 | 3A | 3B | 6A | 6B | 7A | 7B | |
size | 1 | 7 | 28 | 28 | 28 | 28 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | linear of order 3 |
ρ4 | 3 | 3 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ5 | 3 | 3 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ6 | 7 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | orthogonal faithful |
ρ7 | 7 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 0 | 0 | complex faithful |
ρ8 | 7 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 0 | 0 | complex faithful |
(1 5)(2 4)(3 6)(7 8)
(1 6)(2 8)(3 5)(4 7)
(1 7)(2 3)(4 6)(5 8)
(2 3 4 5 6 7 8)
(2 7 3)(5 6 8)
G:=sub<Sym(8)| (1,5)(2,4)(3,6)(7,8), (1,6)(2,8)(3,5)(4,7), (1,7)(2,3)(4,6)(5,8), (2,3,4,5,6,7,8), (2,7,3)(5,6,8)>;
G:=Group( (1,5)(2,4)(3,6)(7,8), (1,6)(2,8)(3,5)(4,7), (1,7)(2,3)(4,6)(5,8), (2,3,4,5,6,7,8), (2,7,3)(5,6,8) );
G=PermutationGroup([[(1,5),(2,4),(3,6),(7,8)], [(1,6),(2,8),(3,5),(4,7)], [(1,7),(2,3),(4,6),(5,8)], [(2,3,4,5,6,7,8)], [(2,7,3),(5,6,8)]])
G:=TransitiveGroup(8,36);
(1 12)(2 13)(5 9)(7 11)
(1 12)(2 13)(3 14)(6 10)
(2 13)(3 14)(4 8)(7 11)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(2 3 5)(4 7 6)(8 11 10)(9 13 14)
G:=sub<Sym(14)| (1,12)(2,13)(5,9)(7,11), (1,12)(2,13)(3,14)(6,10), (2,13)(3,14)(4,8)(7,11), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (2,3,5)(4,7,6)(8,11,10)(9,13,14)>;
G:=Group( (1,12)(2,13)(5,9)(7,11), (1,12)(2,13)(3,14)(6,10), (2,13)(3,14)(4,8)(7,11), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (2,3,5)(4,7,6)(8,11,10)(9,13,14) );
G=PermutationGroup([[(1,12),(2,13),(5,9),(7,11)], [(1,12),(2,13),(3,14),(6,10)], [(2,13),(3,14),(4,8),(7,11)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(2,3,5),(4,7,6),(8,11,10),(9,13,14)]])
G:=TransitiveGroup(14,11);
(1 12)(2 24)(3 10)(4 8)(5 6)(7 9)(11 16)(13 17)(14 15)(18 22)(19 20)(21 23)
(1 13)(2 18)(3 4)(5 9)(6 7)(8 10)(11 14)(12 17)(15 16)(19 23)(20 21)(22 24)
(1 14)(2 19)(3 5)(4 9)(6 10)(7 8)(11 13)(12 15)(16 17)(18 23)(20 24)(21 22)
(4 5 6 7 8 9 10)(11 12 13 14 15 16 17)(18 19 20 21 22 23 24)
(1 3 2)(4 20 12)(5 22 16)(6 24 13)(7 19 17)(8 21 14)(9 23 11)(10 18 15)
G:=sub<Sym(24)| (1,12)(2,24)(3,10)(4,8)(5,6)(7,9)(11,16)(13,17)(14,15)(18,22)(19,20)(21,23), (1,13)(2,18)(3,4)(5,9)(6,7)(8,10)(11,14)(12,17)(15,16)(19,23)(20,21)(22,24), (1,14)(2,19)(3,5)(4,9)(6,10)(7,8)(11,13)(12,15)(16,17)(18,23)(20,24)(21,22), (4,5,6,7,8,9,10)(11,12,13,14,15,16,17)(18,19,20,21,22,23,24), (1,3,2)(4,20,12)(5,22,16)(6,24,13)(7,19,17)(8,21,14)(9,23,11)(10,18,15)>;
G:=Group( (1,12)(2,24)(3,10)(4,8)(5,6)(7,9)(11,16)(13,17)(14,15)(18,22)(19,20)(21,23), (1,13)(2,18)(3,4)(5,9)(6,7)(8,10)(11,14)(12,17)(15,16)(19,23)(20,21)(22,24), (1,14)(2,19)(3,5)(4,9)(6,10)(7,8)(11,13)(12,15)(16,17)(18,23)(20,24)(21,22), (4,5,6,7,8,9,10)(11,12,13,14,15,16,17)(18,19,20,21,22,23,24), (1,3,2)(4,20,12)(5,22,16)(6,24,13)(7,19,17)(8,21,14)(9,23,11)(10,18,15) );
G=PermutationGroup([[(1,12),(2,24),(3,10),(4,8),(5,6),(7,9),(11,16),(13,17),(14,15),(18,22),(19,20),(21,23)], [(1,13),(2,18),(3,4),(5,9),(6,7),(8,10),(11,14),(12,17),(15,16),(19,23),(20,21),(22,24)], [(1,14),(2,19),(3,5),(4,9),(6,10),(7,8),(11,13),(12,15),(16,17),(18,23),(20,24),(21,22)], [(4,5,6,7,8,9,10),(11,12,13,14,15,16,17),(18,19,20,21,22,23,24)], [(1,3,2),(4,20,12),(5,22,16),(6,24,13),(7,19,17),(8,21,14),(9,23,11),(10,18,15)]])
G:=TransitiveGroup(24,283);
(1 17)(3 14)(4 20)(5 9)(6 22)(7 23)(8 27)(10 15)(11 16)(12 24)(19 26)(21 28)
(1 24)(2 18)(4 8)(5 21)(6 10)(7 23)(9 28)(11 16)(12 17)(13 25)(15 22)(20 27)
(1 24)(2 25)(3 19)(5 9)(6 15)(7 11)(10 22)(12 17)(13 18)(14 26)(16 23)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(2 3 5)(4 7 6)(8 16 22)(9 18 26)(10 20 23)(11 15 27)(12 17 24)(13 19 28)(14 21 25)
G:=sub<Sym(28)| (1,17)(3,14)(4,20)(5,9)(6,22)(7,23)(8,27)(10,15)(11,16)(12,24)(19,26)(21,28), (1,24)(2,18)(4,8)(5,21)(6,10)(7,23)(9,28)(11,16)(12,17)(13,25)(15,22)(20,27), (1,24)(2,25)(3,19)(5,9)(6,15)(7,11)(10,22)(12,17)(13,18)(14,26)(16,23)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(8,16,22)(9,18,26)(10,20,23)(11,15,27)(12,17,24)(13,19,28)(14,21,25)>;
G:=Group( (1,17)(3,14)(4,20)(5,9)(6,22)(7,23)(8,27)(10,15)(11,16)(12,24)(19,26)(21,28), (1,24)(2,18)(4,8)(5,21)(6,10)(7,23)(9,28)(11,16)(12,17)(13,25)(15,22)(20,27), (1,24)(2,25)(3,19)(5,9)(6,15)(7,11)(10,22)(12,17)(13,18)(14,26)(16,23)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(8,16,22)(9,18,26)(10,20,23)(11,15,27)(12,17,24)(13,19,28)(14,21,25) );
G=PermutationGroup([[(1,17),(3,14),(4,20),(5,9),(6,22),(7,23),(8,27),(10,15),(11,16),(12,24),(19,26),(21,28)], [(1,24),(2,18),(4,8),(5,21),(6,10),(7,23),(9,28),(11,16),(12,17),(13,25),(15,22),(20,27)], [(1,24),(2,25),(3,19),(5,9),(6,15),(7,11),(10,22),(12,17),(13,18),(14,26),(16,23),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(2,3,5),(4,7,6),(8,16,22),(9,18,26),(10,20,23),(11,15,27),(12,17,24),(13,19,28),(14,21,25)]])
G:=TransitiveGroup(28,27);
Polynomial with Galois group AΓL1(𝔽8) over ℚ
action | f(x) | Disc(f) |
---|---|---|
8T36 | x8-28x6+12x5+194x4-80x3-292x2-132x-17 | 220·734·10692 |
14T11 | x14-27x12+171x10-463x8+611x6-379x4+85x2-1 | 226·738 |
Matrix representation of AΓL1(𝔽8) ►in GL7(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(7,Integers())| [-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;
AΓL1(𝔽8) in GAP, Magma, Sage, TeX
{\rm AGammaL}_1({\mathbb F}_8)
% in TeX
G:=Group("AGammaL(1,8)");
// GroupNames label
G:=SmallGroup(168,43);
// by ID
G=gap.SmallGroup(168,43);
# by ID
G:=PCGroup([5,-3,-7,-2,2,2,61,1577,217,1263,568,529,884]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^7=e^3=1,a*b=b*a,e*a*e^-1=a*c=c*a,d*a*d^-1=c*b=b*c,d*b*d^-1=e*b*e^-1=a,d*c*d^-1=b,e*c*e^-1=a*b*c,e*d*e^-1=d^4>;
// generators/relations
Export
Subgroup lattice of AΓL1(𝔽8) in TeX
Character table of AΓL1(𝔽8) in TeX