p-group, metabelian, nilpotent (class 4), monomial
Aliases: (C2×D4).137D4, C42.14(C2×C4), C4.4D4.2C4, C4⋊Q8.96C22, C4.21(C23⋊C4), C42.3C4⋊7C2, (C22×C4).102D4, (C2×Q8).15C23, (C22×Q8).14C4, C42⋊C2.12C4, C23.27(C22⋊C4), C4.10D4.8C22, C23.38C23.9C2, M4(2).8C22.11C2, (C2×C4).12(C2×D4), C2.47(C2×C23⋊C4), (C2×Q8).40(C2×C4), (C2×D4).128(C2×C4), (C22×C4).36(C2×C4), (C2×C4).104(C22×C4), (C2×C4○D4).79C22, C22.71(C2×C22⋊C4), (C2×C4).147(C22⋊C4), SmallGroup(128,867)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×D4).137D4
G = < a,b,c,d,e | a2=b4=c2=1, d4=b2, e2=ab-1, dbd-1=ab=ba, dcd-1=ece-1=ac=ca, dad-1=eae-1=ab2, cbc=ebe-1=b-1, ede-1=ab-1d3 >
Subgroups: 252 in 115 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4.D4, C4.10D4, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C2×M4(2), C22×Q8, C2×C4○D4, C42.3C4, M4(2).8C22, C23.38C23, (C2×D4).137D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C2×C23⋊C4, (C2×D4).137D4
Character table of (C2×D4).137D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | -i | i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -i | -i | -i | i | i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | -i | i | i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | i | i | i | -i | -i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | -i | i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | i | -i | -i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)
(1 28 5 32)(2 25 6 29)(3 26 7 30)(4 31 8 27)(9 17 13 21)(10 22 14 18)(11 23 15 19)(12 20 16 24)
(1 7)(2 4)(3 5)(6 8)(9 11)(10 16)(12 14)(13 15)(17 19)(18 24)(20 22)(21 23)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 28 22 5 10 32 18)(2 17 29 13 6 21 25 9)(3 12 26 24 7 16 30 20)(4 19 27 11 8 23 31 15)
G:=sub<Sym(32)| (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32), (1,28,5,32)(2,25,6,29)(3,26,7,30)(4,31,8,27)(9,17,13,21)(10,22,14,18)(11,23,15,19)(12,20,16,24), (1,7)(2,4)(3,5)(6,8)(9,11)(10,16)(12,14)(13,15)(17,19)(18,24)(20,22)(21,23)(25,27)(26,28)(29,31)(30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,28,22,5,10,32,18)(2,17,29,13,6,21,25,9)(3,12,26,24,7,16,30,20)(4,19,27,11,8,23,31,15)>;
G:=Group( (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32), (1,28,5,32)(2,25,6,29)(3,26,7,30)(4,31,8,27)(9,17,13,21)(10,22,14,18)(11,23,15,19)(12,20,16,24), (1,7)(2,4)(3,5)(6,8)(9,11)(10,16)(12,14)(13,15)(17,19)(18,24)(20,22)(21,23)(25,27)(26,28)(29,31)(30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,28,22,5,10,32,18)(2,17,29,13,6,21,25,9)(3,12,26,24,7,16,30,20)(4,19,27,11,8,23,31,15) );
G=PermutationGroup([[(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32)], [(1,28,5,32),(2,25,6,29),(3,26,7,30),(4,31,8,27),(9,17,13,21),(10,22,14,18),(11,23,15,19),(12,20,16,24)], [(1,7),(2,4),(3,5),(6,8),(9,11),(10,16),(12,14),(13,15),(17,19),(18,24),(20,22),(21,23),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,28,22,5,10,32,18),(2,17,29,13,6,21,25,9),(3,12,26,24,7,16,30,20),(4,19,27,11,8,23,31,15)]])
Matrix representation of (C2×D4).137D4 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
13 | 16 | 14 | 0 | 0 | 1 | 0 | 0 |
13 | 12 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 4 | 13 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 16 | 16 | 0 | 0 | 0 | 0 |
13 | 16 | 14 | 0 | 16 | 2 | 0 | 0 |
13 | 0 | 0 | 3 | 16 | 1 | 0 | 0 |
13 | 4 | 13 | 16 | 16 | 1 | 0 | 1 |
0 | 0 | 0 | 4 | 0 | 1 | 16 | 0 |
16 | 16 | 1 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 4 | 13 | 0 | 16 | 0 | 0 | 2 |
13 | 16 | 1 | 4 | 16 | 0 | 1 | 1 |
13 | 16 | 1 | 4 | 16 | 1 | 0 | 1 |
0 | 4 | 13 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
16 | 4 | 12 | 0 | 4 | 9 | 0 | 0 |
16 | 3 | 13 | 0 | 4 | 0 | 9 | 0 |
0 | 1 | 16 | 0 | 0 | 13 | 4 | 13 |
13 | 13 | 4 | 8 | 0 | 0 | 0 | 0 |
13 | 13 | 4 | 4 | 0 | 13 | 5 | 0 |
13 | 13 | 0 | 4 | 0 | 14 | 4 | 0 |
13 | 13 | 4 | 4 | 0 | 16 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
4 | 1 | 3 | 0 | 1 | 15 | 0 | 0 |
4 | 5 | 16 | 0 | 1 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 16 | 14 | 0 |
0 | 1 | 16 | 16 | 4 | 12 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 13 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,13,13,0,0,16,0,0,0,16,12,4,0,0,16,0,0,14,1,13,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,16,16,0,13,13,13,0,1,0,16,1,16,0,4,0,0,0,1,16,14,0,13,0,0,0,2,16,0,3,16,4,0,0,0,0,16,16,16,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[16,0,0,0,0,13,13,0,16,0,1,16,4,16,16,4,1,1,0,1,13,1,1,13,2,0,0,1,0,4,4,0,0,0,0,0,16,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,1,1],[0,16,16,0,13,13,13,13,0,4,3,1,13,13,13,13,0,12,13,16,4,4,0,4,0,0,0,0,8,4,4,4,13,4,4,0,0,0,0,0,0,9,0,13,0,13,14,16,0,0,9,4,0,5,4,1,0,0,0,13,0,0,0,0],[0,4,4,0,0,0,0,0,0,1,5,0,1,0,1,0,0,3,16,0,0,0,16,0,0,0,0,0,0,0,16,0,1,1,1,0,0,4,4,0,0,15,0,16,0,16,12,4,0,0,15,1,0,14,1,13,0,0,0,1,0,0,0,0] >;
(C2×D4).137D4 in GAP, Magma, Sage, TeX
(C_2\times D_4)._{137}D_4
% in TeX
G:=Group("(C2xD4).137D4");
// GroupNames label
G:=SmallGroup(128,867);
// by ID
G=gap.SmallGroup(128,867);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,456,723,352,1123,1018,248,1971,375,172,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^4=b^2,e^2=a*b^-1,d*b*d^-1=a*b=b*a,d*c*d^-1=e*c*e^-1=a*c=c*a,d*a*d^-1=e*a*e^-1=a*b^2,c*b*c=e*b*e^-1=b^-1,e*d*e^-1=a*b^-1*d^3>;
// generators/relations
Export