extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xD4).1(C2xC4) = C42.D4 | φ: C2xC4/C1 → C2xC4 ⊆ Out C2xD4 | 16 | 4+ | (C2xD4).1(C2xC4) | 128,134 |
(C2xD4).2(C2xC4) = C42.2D4 | φ: C2xC4/C1 → C2xC4 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).2(C2xC4) | 128,135 |
(C2xD4).3(C2xC4) = C42.375D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).3(C2xC4) | 128,232 |
(C2xD4).4(C2xC4) = C24.53D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).4(C2xC4) | 128,233 |
(C2xD4).5(C2xC4) = C42.403D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).5(C2xC4) | 128,234 |
(C2xD4).6(C2xC4) = C42.55D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).6(C2xC4) | 128,237 |
(C2xD4).7(C2xC4) = C24.54D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).7(C2xC4) | 128,239 |
(C2xD4).8(C2xC4) = C42.57D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).8(C2xC4) | 128,241 |
(C2xD4).9(C2xC4) = C24.56D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).9(C2xC4) | 128,242 |
(C2xD4).10(C2xC4) = C42.58D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).10(C2xC4) | 128,244 |
(C2xD4).11(C2xC4) = C24.58D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).11(C2xC4) | 128,245 |
(C2xD4).12(C2xC4) = C42.59D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).12(C2xC4) | 128,246 |
(C2xD4).13(C2xC4) = C24.59D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).13(C2xC4) | 128,248 |
(C2xD4).14(C2xC4) = C42.61D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).14(C2xC4) | 128,249 |
(C2xD4).15(C2xC4) = C24.60D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).15(C2xC4) | 128,251 |
(C2xD4).16(C2xC4) = C42.63D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).16(C2xC4) | 128,253 |
(C2xD4).17(C2xC4) = C2xC42.C22 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).17(C2xC4) | 128,254 |
(C2xD4).18(C2xC4) = C42.66D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).18(C2xC4) | 128,256 |
(C2xD4).19(C2xC4) = C42.405D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).19(C2xC4) | 128,257 |
(C2xD4).20(C2xC4) = C42.407D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).20(C2xC4) | 128,259 |
(C2xD4).21(C2xC4) = C42.376D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).21(C2xC4) | 128,261 |
(C2xD4).22(C2xC4) = C42.67D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).22(C2xC4) | 128,262 |
(C2xD4).23(C2xC4) = C42.69D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).23(C2xC4) | 128,264 |
(C2xD4).24(C2xC4) = C42.70D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).24(C2xC4) | 128,265 |
(C2xD4).25(C2xC4) = C42.72D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).25(C2xC4) | 128,267 |
(C2xD4).26(C2xC4) = C42.73D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).26(C2xC4) | 128,268 |
(C2xD4).27(C2xC4) = C2xC4.D8 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).27(C2xC4) | 128,270 |
(C2xD4).28(C2xC4) = C42.409D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).28(C2xC4) | 128,272 |
(C2xD4).29(C2xC4) = C42.411D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).29(C2xC4) | 128,275 |
(C2xD4).30(C2xC4) = C42.413D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).30(C2xC4) | 128,277 |
(C2xD4).31(C2xC4) = C42.78D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).31(C2xC4) | 128,279 |
(C2xD4).32(C2xC4) = C42.80D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).32(C2xC4) | 128,283 |
(C2xD4).33(C2xC4) = C42.417D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).33(C2xC4) | 128,285 |
(C2xD4).34(C2xC4) = C42.82D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).34(C2xC4) | 128,287 |
(C2xD4).35(C2xC4) = C42.84D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).35(C2xC4) | 128,289 |
(C2xD4).36(C2xC4) = C42.87D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 64 | | (C2xD4).36(C2xC4) | 128,292 |
(C2xD4).37(C2xC4) = C4:Q8:29C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).37(C2xC4) | 128,858 |
(C2xD4).38(C2xC4) = C4.4D4:C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).38(C2xC4) | 128,860 |
(C2xD4).39(C2xC4) = C2xC42.C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | | (C2xD4).39(C2xC4) | 128,862 |
(C2xD4).40(C2xC4) = (C2xD4).135D4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).40(C2xC4) | 128,864 |
(C2xD4).41(C2xC4) = C4:Q8.C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).41(C2xC4) | 128,865 |
(C2xD4).42(C2xC4) = C4:1D4.C4 | φ: C2xC4/C2 → C4 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).42(C2xC4) | 128,866 |
(C2xD4).43(C2xC4) = C24.5D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).43(C2xC4) | 128,122 |
(C2xD4).44(C2xC4) = C23.2C42 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).44(C2xC4) | 128,123 |
(C2xD4).45(C2xC4) = C23.3C42 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).45(C2xC4) | 128,124 |
(C2xD4).46(C2xC4) = C24.6D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).46(C2xC4) | 128,125 |
(C2xD4).47(C2xC4) = (C22xC8):C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).47(C2xC4) | 128,127 |
(C2xD4).48(C2xC4) = C42.45D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).48(C2xC4) | 128,212 |
(C2xD4).49(C2xC4) = C42.373D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).49(C2xC4) | 128,214 |
(C2xD4).50(C2xC4) = C42.47D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).50(C2xC4) | 128,215 |
(C2xD4).51(C2xC4) = C42.400D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).51(C2xC4) | 128,216 |
(C2xD4).52(C2xC4) = C42.315D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).52(C2xC4) | 128,224 |
(C2xD4).53(C2xC4) = C42.305D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).53(C2xC4) | 128,226 |
(C2xD4).54(C2xC4) = C42.52D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).54(C2xC4) | 128,227 |
(C2xD4).55(C2xC4) = C42.53D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).55(C2xC4) | 128,228 |
(C2xD4).56(C2xC4) = C8:15SD16 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).56(C2xC4) | 128,315 |
(C2xD4).57(C2xC4) = Q8:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).57(C2xC4) | 128,320 |
(C2xD4).58(C2xC4) = C8:6D8 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).58(C2xC4) | 128,321 |
(C2xD4).59(C2xC4) = C8:9SD16 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).59(C2xC4) | 128,322 |
(C2xD4).60(C2xC4) = C8:M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).60(C2xC4) | 128,324 |
(C2xD4).61(C2xC4) = C8:3M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).61(C2xC4) | 128,326 |
(C2xD4).62(C2xC4) = 2+ 1+4:2C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).62(C2xC4) | 128,522 |
(C2xD4).63(C2xC4) = 2+ 1+4.2C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).63(C2xC4) | 128,523 |
(C2xD4).64(C2xC4) = 2+ 1+4:3C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).64(C2xC4) | 128,524 |
(C2xD4).65(C2xC4) = 2+ 1+4:4C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).65(C2xC4) | 128,526 |
(C2xD4).66(C2xC4) = C24.21D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).66(C2xC4) | 128,588 |
(C2xD4).67(C2xC4) = M4(2).40D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).67(C2xC4) | 128,590 |
(C2xD4).68(C2xC4) = C24.22D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).68(C2xC4) | 128,599 |
(C2xD4).69(C2xC4) = (C2xD4).Q8 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).69(C2xC4) | 128,600 |
(C2xD4).70(C2xC4) = C24.72D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).70(C2xC4) | 128,603 |
(C2xD4).71(C2xC4) = C24.74D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).71(C2xC4) | 128,607 |
(C2xD4).72(C2xC4) = M4(2).43D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).72(C2xC4) | 128,608 |
(C2xD4).73(C2xC4) = (C2xSD16):15C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).73(C2xC4) | 128,612 |
(C2xD4).74(C2xC4) = M4(2).44D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).74(C2xC4) | 128,613 |
(C2xD4).75(C2xC4) = M4(2):19D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).75(C2xC4) | 128,616 |
(C2xD4).76(C2xC4) = C24.23D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).76(C2xC4) | 128,617 |
(C2xD4).77(C2xC4) = C4.4D4:13C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).77(C2xC4) | 128,620 |
(C2xD4).78(C2xC4) = C25.C22 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | | (C2xD4).78(C2xC4) | 128,621 |
(C2xD4).79(C2xC4) = C24.26D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).79(C2xC4) | 128,622 |
(C2xD4).80(C2xC4) = (C2xC8):D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).80(C2xC4) | 128,623 |
(C2xD4).81(C2xC4) = C23.23D8 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).81(C2xC4) | 128,625 |
(C2xD4).82(C2xC4) = C24.76D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).82(C2xC4) | 128,627 |
(C2xD4).83(C2xC4) = C42:7D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).83(C2xC4) | 128,629 |
(C2xD4).84(C2xC4) = M4(2).46D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).84(C2xC4) | 128,634 |
(C2xD4).85(C2xC4) = M4(2).47D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).85(C2xC4) | 128,635 |
(C2xD4).86(C2xC4) = C42.6D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).86(C2xC4) | 128,637 |
(C2xD4).87(C2xC4) = M4(2).48D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).87(C2xC4) | 128,639 |
(C2xD4).88(C2xC4) = C4.(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).88(C2xC4) | 128,641 |
(C2xD4).89(C2xC4) = (C2xC8):4D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).89(C2xC4) | 128,642 |
(C2xD4).90(C2xC4) = C42.7D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).90(C2xC4) | 128,644 |
(C2xD4).91(C2xC4) = C24.28D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).91(C2xC4) | 128,645 |
(C2xD4).92(C2xC4) = M4(2):21D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).92(C2xC4) | 128,646 |
(C2xD4).93(C2xC4) = M4(2).50D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).93(C2xC4) | 128,647 |
(C2xD4).94(C2xC4) = D4:C4:C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).94(C2xC4) | 128,657 |
(C2xD4).95(C2xC4) = C4.67(C4xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).95(C2xC4) | 128,658 |
(C2xD4).96(C2xC4) = M4(2).24D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).96(C2xC4) | 128,661 |
(C2xD4).97(C2xC4) = C4.D4:3C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).97(C2xC4) | 128,663 |
(C2xD4).98(C2xC4) = C42.427D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).98(C2xC4) | 128,664 |
(C2xD4).99(C2xC4) = C2.(C8:7D4) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).99(C2xC4) | 128,666 |
(C2xD4).100(C2xC4) = C2.(C8:2D4) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).100(C2xC4) | 128,668 |
(C2xD4).101(C2xC4) = C42.428D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).101(C2xC4) | 128,669 |
(C2xD4).102(C2xC4) = C42.107D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).102(C2xC4) | 128,670 |
(C2xD4).103(C2xC4) = C42.432D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).103(C2xC4) | 128,689 |
(C2xD4).104(C2xC4) = C42.433D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).104(C2xC4) | 128,690 |
(C2xD4).105(C2xC4) = C42.110D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).105(C2xC4) | 128,691 |
(C2xD4).106(C2xC4) = C42.112D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).106(C2xC4) | 128,693 |
(C2xD4).107(C2xC4) = C43:C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).107(C2xC4) | 128,694 |
(C2xD4).108(C2xC4) = C42:8D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).108(C2xC4) | 128,695 |
(C2xD4).109(C2xC4) = (C2xC4):9SD16 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).109(C2xC4) | 128,700 |
(C2xD4).110(C2xC4) = (C2xC4):6D8 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).110(C2xC4) | 128,702 |
(C2xD4).111(C2xC4) = (C2xD8):10C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).111(C2xC4) | 128,704 |
(C2xD4).112(C2xC4) = C8:(C22:C4) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).112(C2xC4) | 128,705 |
(C2xD4).113(C2xC4) = C42.326D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).113(C2xC4) | 128,706 |
(C2xD4).114(C2xC4) = C42.116D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).114(C2xC4) | 128,707 |
(C2xD4).115(C2xC4) = M4(2).30D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).115(C2xC4) | 128,708 |
(C2xD4).116(C2xC4) = M4(2).31D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).116(C2xC4) | 128,709 |
(C2xD4).117(C2xC4) = M4(2).32D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).117(C2xC4) | 128,710 |
(C2xD4).118(C2xC4) = M4(2):13D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).118(C2xC4) | 128,712 |
(C2xD4).119(C2xC4) = C42.118D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).119(C2xC4) | 128,714 |
(C2xD4).120(C2xC4) = C42.119D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).120(C2xC4) | 128,715 |
(C2xD4).121(C2xC4) = C2xC2wrC4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | | (C2xD4).121(C2xC4) | 128,850 |
(C2xD4).122(C2xC4) = C2xC23.D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).122(C2xC4) | 128,851 |
(C2xD4).123(C2xC4) = C4oC2wrC4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).123(C2xC4) | 128,852 |
(C2xD4).124(C2xC4) = C24.36D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).124(C2xC4) | 128,853 |
(C2xD4).125(C2xC4) = C2wrC4:C2 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).125(C2xC4) | 128,854 |
(C2xD4).126(C2xC4) = C23.(C2xD4) | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).126(C2xC4) | 128,855 |
(C2xD4).127(C2xC4) = C2xC42:3C4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).127(C2xC4) | 128,857 |
(C2xD4).128(C2xC4) = (C2xD4).137D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).128(C2xC4) | 128,867 |
(C2xD4).129(C2xC4) = C24.204C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).129(C2xC4) | 128,1067 |
(C2xD4).130(C2xC4) = C24.205C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).130(C2xC4) | 128,1069 |
(C2xD4).131(C2xC4) = C24.221C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).131(C2xC4) | 128,1104 |
(C2xD4).132(C2xC4) = C24.223C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).132(C2xC4) | 128,1106 |
(C2xD4).133(C2xC4) = C23.257C24 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).133(C2xC4) | 128,1107 |
(C2xD4).134(C2xC4) = C24.225C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).134(C2xC4) | 128,1108 |
(C2xD4).135(C2xC4) = C23.261C24 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).135(C2xC4) | 128,1111 |
(C2xD4).136(C2xC4) = C42.265C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).136(C2xC4) | 128,1662 |
(C2xD4).137(C2xC4) = C42.266C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).137(C2xC4) | 128,1664 |
(C2xD4).138(C2xC4) = C42.278C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).138(C2xC4) | 128,1681 |
(C2xD4).139(C2xC4) = M4(2).51D4 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 16 | 4 | (C2xD4).139(C2xC4) | 128,1688 |
(C2xD4).140(C2xC4) = M4(2)oD8 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).140(C2xC4) | 128,1689 |
(C2xD4).141(C2xC4) = C42.292C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).141(C2xC4) | 128,1699 |
(C2xD4).142(C2xC4) = C42.294C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).142(C2xC4) | 128,1701 |
(C2xD4).143(C2xC4) = C42.299C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 32 | | (C2xD4).143(C2xC4) | 128,1710 |
(C2xD4).144(C2xC4) = C42.300C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).144(C2xC4) | 128,1712 |
(C2xD4).145(C2xC4) = C42.301C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).145(C2xC4) | 128,1713 |
(C2xD4).146(C2xC4) = C42.308C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).146(C2xC4) | 128,1725 |
(C2xD4).147(C2xC4) = C42.310C23 | φ: C2xC4/C2 → C22 ⊆ Out C2xD4 | 64 | | (C2xD4).147(C2xC4) | 128,1727 |
(C2xD4).148(C2xC4) = C8xD8 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).148(C2xC4) | 128,307 |
(C2xD4).149(C2xC4) = C8xSD16 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).149(C2xC4) | 128,308 |
(C2xD4).150(C2xC4) = SD16:C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).150(C2xC4) | 128,310 |
(C2xD4).151(C2xC4) = D8:5C8 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).151(C2xC4) | 128,312 |
(C2xD4).152(C2xC4) = C8:9D8 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).152(C2xC4) | 128,313 |
(C2xD4).153(C2xC4) = C8:12SD16 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).153(C2xC4) | 128,314 |
(C2xD4).154(C2xC4) = D4.M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).154(C2xC4) | 128,317 |
(C2xD4).155(C2xC4) = D4:2M4(2) | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).155(C2xC4) | 128,318 |
(C2xD4).156(C2xC4) = C4xC23:C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).156(C2xC4) | 128,486 |
(C2xD4).157(C2xC4) = C4xC4.D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).157(C2xC4) | 128,487 |
(C2xD4).158(C2xC4) = C23.5C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).158(C2xC4) | 128,489 |
(C2xD4).159(C2xC4) = Q8.C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).159(C2xC4) | 128,496 |
(C2xD4).160(C2xC4) = D4.3C42 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).160(C2xC4) | 128,497 |
(C2xD4).161(C2xC4) = C2.(C4xD8) | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).161(C2xC4) | 128,594 |
(C2xD4).162(C2xC4) = D4:(C4:C4) | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).162(C2xC4) | 128,596 |
(C2xD4).163(C2xC4) = M4(2).42D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).163(C2xC4) | 128,598 |
(C2xD4).164(C2xC4) = (C2xSD16):14C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).164(C2xC4) | 128,609 |
(C2xD4).165(C2xC4) = C4xC22.D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).165(C2xC4) | 128,1033 |
(C2xD4).166(C2xC4) = C4xC4.4D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).166(C2xC4) | 128,1035 |
(C2xD4).167(C2xC4) = C24.195C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).167(C2xC4) | 128,1054 |
(C2xD4).168(C2xC4) = C42.160D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).168(C2xC4) | 128,1058 |
(C2xD4).169(C2xC4) = C23.241C24 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).169(C2xC4) | 128,1091 |
(C2xD4).170(C2xC4) = C24.220C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).170(C2xC4) | 128,1099 |
(C2xD4).171(C2xC4) = C42.264C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).171(C2xC4) | 128,1661 |
(C2xD4).172(C2xC4) = C42.681C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).172(C2xC4) | 128,1663 |
(C2xD4).173(C2xC4) = M4(2):22D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).173(C2xC4) | 128,1665 |
(C2xD4).174(C2xC4) = M4(2):23D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).174(C2xC4) | 128,1667 |
(C2xD4).175(C2xC4) = C2xC4xSD16 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).175(C2xC4) | 128,1669 |
(C2xD4).176(C2xC4) = C2xSD16:C4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).176(C2xC4) | 128,1672 |
(C2xD4).177(C2xC4) = C2xC8oD8 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).177(C2xC4) | 128,1685 |
(C2xD4).178(C2xC4) = C2xC8.26D4 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).178(C2xC4) | 128,1686 |
(C2xD4).179(C2xC4) = C42.283C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).179(C2xC4) | 128,1687 |
(C2xD4).180(C2xC4) = C42.291C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).180(C2xC4) | 128,1698 |
(C2xD4).181(C2xC4) = C42.293C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).181(C2xC4) | 128,1700 |
(C2xD4).182(C2xC4) = C42.297C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).182(C2xC4) | 128,1708 |
(C2xD4).183(C2xC4) = C42.298C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).183(C2xC4) | 128,1709 |
(C2xD4).184(C2xC4) = C42.694C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).184(C2xC4) | 128,1711 |
(C2xD4).185(C2xC4) = C42.307C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).185(C2xC4) | 128,1724 |
(C2xD4).186(C2xC4) = C42.309C23 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).186(C2xC4) | 128,1726 |
(C2xD4).187(C2xC4) = C4.22C25 | φ: C2xC4/C4 → C2 ⊆ Out C2xD4 | 32 | 4 | (C2xD4).187(C2xC4) | 128,2305 |
(C2xD4).188(C2xC4) = C2xD4:C8 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).188(C2xC4) | 128,206 |
(C2xD4).189(C2xC4) = C42.455D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).189(C2xC4) | 128,208 |
(C2xD4).190(C2xC4) = C42.397D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).190(C2xC4) | 128,209 |
(C2xD4).191(C2xC4) = C42.398D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).191(C2xC4) | 128,210 |
(C2xD4).192(C2xC4) = D4:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).192(C2xC4) | 128,218 |
(C2xD4).193(C2xC4) = C42.374D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).193(C2xC4) | 128,220 |
(C2xD4).194(C2xC4) = D4:4M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).194(C2xC4) | 128,221 |
(C2xD4).195(C2xC4) = D4:5M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).195(C2xC4) | 128,222 |
(C2xD4).196(C2xC4) = C4xC4wrC2 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).196(C2xC4) | 128,490 |
(C2xD4).197(C2xC4) = D4.C42 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).197(C2xC4) | 128,491 |
(C2xD4).198(C2xC4) = C4xD4:C4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).198(C2xC4) | 128,492 |
(C2xD4).199(C2xC4) = D4:C42 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).199(C2xC4) | 128,494 |
(C2xD4).200(C2xC4) = C23.35D8 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).200(C2xC4) | 128,518 |
(C2xD4).201(C2xC4) = C24.65D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).201(C2xC4) | 128,520 |
(C2xD4).202(C2xC4) = C24.66D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).202(C2xC4) | 128,521 |
(C2xD4).203(C2xC4) = C4oD4.D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).203(C2xC4) | 128,527 |
(C2xD4).204(C2xC4) = (C22xQ8):C4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).204(C2xC4) | 128,528 |
(C2xD4).205(C2xC4) = C42.98D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).205(C2xC4) | 128,534 |
(C2xD4).206(C2xC4) = C42.100D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).206(C2xC4) | 128,536 |
(C2xD4).207(C2xC4) = C42.102D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).207(C2xC4) | 128,538 |
(C2xD4).208(C2xC4) = C42:42D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).208(C2xC4) | 128,1022 |
(C2xD4).209(C2xC4) = C43:9C2 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).209(C2xC4) | 128,1025 |
(C2xD4).210(C2xC4) = C23.191C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).210(C2xC4) | 128,1041 |
(C2xD4).211(C2xC4) = C24.547C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).211(C2xC4) | 128,1050 |
(C2xD4).212(C2xC4) = C23.201C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).212(C2xC4) | 128,1051 |
(C2xD4).213(C2xC4) = C23.223C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).213(C2xC4) | 128,1073 |
(C2xD4).214(C2xC4) = C23.234C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).214(C2xC4) | 128,1084 |
(C2xD4).215(C2xC4) = C23.235C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).215(C2xC4) | 128,1085 |
(C2xD4).216(C2xC4) = C23.236C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).216(C2xC4) | 128,1086 |
(C2xD4).217(C2xC4) = C24.212C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).217(C2xC4) | 128,1089 |
(C2xD4).218(C2xC4) = C2x(C22xC8):C2 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).218(C2xC4) | 128,1610 |
(C2xD4).219(C2xC4) = C24.73(C2xC4) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).219(C2xC4) | 128,1611 |
(C2xD4).220(C2xC4) = D4o(C22:C8) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).220(C2xC4) | 128,1612 |
(C2xD4).221(C2xC4) = C23.4C24 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).221(C2xC4) | 128,1616 |
(C2xD4).222(C2xC4) = C22xC4.D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).222(C2xC4) | 128,1617 |
(C2xD4).223(C2xC4) = C2xM4(2).8C22 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).223(C2xC4) | 128,1619 |
(C2xD4).224(C2xC4) = M4(2).24C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 16 | 8+ | (C2xD4).224(C2xC4) | 128,1620 |
(C2xD4).225(C2xC4) = M4(2).25C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | 8- | (C2xD4).225(C2xC4) | 128,1621 |
(C2xD4).226(C2xC4) = C2xC23.24D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).226(C2xC4) | 128,1624 |
(C2xD4).227(C2xC4) = C42.260C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).227(C2xC4) | 128,1654 |
(C2xD4).228(C2xC4) = C42.261C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).228(C2xC4) | 128,1655 |
(C2xD4).229(C2xC4) = C42.678C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).229(C2xC4) | 128,1657 |
(C2xD4).230(C2xC4) = C2xC8:9D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).230(C2xC4) | 128,1659 |
(C2xD4).231(C2xC4) = C2xC8:6D4 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).231(C2xC4) | 128,1660 |
(C2xD4).232(C2xC4) = C42.290C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).232(C2xC4) | 128,1697 |
(C2xD4).233(C2xC4) = Q8:6M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).233(C2xC4) | 128,1703 |
(C2xD4).234(C2xC4) = C23:3M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).234(C2xC4) | 128,1705 |
(C2xD4).235(C2xC4) = D4:7M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).235(C2xC4) | 128,1706 |
(C2xD4).236(C2xC4) = C42.693C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).236(C2xC4) | 128,1707 |
(C2xD4).237(C2xC4) = C42.698C23 | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).237(C2xC4) | 128,1721 |
(C2xD4).238(C2xC4) = D4:8M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).238(C2xC4) | 128,1722 |
(C2xD4).239(C2xC4) = Q8:7M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 64 | | (C2xD4).239(C2xC4) | 128,1723 |
(C2xD4).240(C2xC4) = C2xQ8oM4(2) | φ: C2xC4/C22 → C2 ⊆ Out C2xD4 | 32 | | (C2xD4).240(C2xC4) | 128,2304 |
(C2xD4).241(C2xC4) = D4xC42 | φ: trivial image | 64 | | (C2xD4).241(C2xC4) | 128,1003 |
(C2xD4).242(C2xC4) = D4:4C42 | φ: trivial image | 64 | | (C2xD4).242(C2xC4) | 128,1007 |
(C2xD4).243(C2xC4) = D4xC4:C4 | φ: trivial image | 64 | | (C2xD4).243(C2xC4) | 128,1080 |
(C2xD4).244(C2xC4) = C23.231C24 | φ: trivial image | 64 | | (C2xD4).244(C2xC4) | 128,1081 |
(C2xD4).245(C2xC4) = C4xC8oD4 | φ: trivial image | 64 | | (C2xD4).245(C2xC4) | 128,1606 |
(C2xD4).246(C2xC4) = D4.5C42 | φ: trivial image | 64 | | (C2xD4).246(C2xC4) | 128,1607 |
(C2xD4).247(C2xC4) = C42.674C23 | φ: trivial image | 64 | | (C2xD4).247(C2xC4) | 128,1638 |
(C2xD4).248(C2xC4) = D4xC2xC8 | φ: trivial image | 64 | | (C2xD4).248(C2xC4) | 128,1658 |
(C2xD4).249(C2xC4) = D4xM4(2) | φ: trivial image | 32 | | (C2xD4).249(C2xC4) | 128,1666 |
(C2xD4).250(C2xC4) = C8xC4oD4 | φ: trivial image | 64 | | (C2xD4).250(C2xC4) | 128,1696 |
(C2xD4).251(C2xC4) = D4:6M4(2) | φ: trivial image | 64 | | (C2xD4).251(C2xC4) | 128,1702 |
(C2xD4).252(C2xC4) = C42.691C23 | φ: trivial image | 32 | | (C2xD4).252(C2xC4) | 128,1704 |
(C2xD4).253(C2xC4) = C42.697C23 | φ: trivial image | 64 | | (C2xD4).253(C2xC4) | 128,1720 |
(C2xD4).254(C2xC4) = C22xC8oD4 | φ: trivial image | 64 | | (C2xD4).254(C2xC4) | 128,2303 |