Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C2xC4

Direct product G=NxQ with N=C2xD4 and Q=C2xC4
dρLabelID
D4xC22xC464D4xC2^2xC4128,2154

Semidirect products G=N:Q with N=C2xD4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xD4):1(C2xC4) = C2xC22.SD16φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4):1(C2xC4)128,230
(C2xD4):2(C2xC4) = C24.150D4φ: C2xC4/C2C4 ⊆ Out C2xD416(C2xD4):2(C2xC4)128,236
(C2xD4):3(C2xC4) = C2xC42:C4φ: C2xC4/C2C4 ⊆ Out C2xD416(C2xD4):3(C2xC4)128,856
(C2xD4):4(C2xC4) = C24.39D4φ: C2xC4/C2C4 ⊆ Out C2xD4168+(C2xD4):4(C2xC4)128,859
(C2xD4):5(C2xC4) = C23.38D8φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):5(C2xC4)128,606
(C2xD4):6(C2xC4) = (C2xC4):9D8φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):6(C2xC4)128,611
(C2xD4):7(C2xC4) = C8:C22:C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4):7(C2xC4)128,615
(C2xD4):8(C2xC4) = C24.24D4φ: C2xC4/C2C22 ⊆ Out C2xD416(C2xD4):8(C2xC4)128,619
(C2xD4):9(C2xC4) = (C2xC4)wrC2φ: C2xC4/C2C22 ⊆ Out C2xD416(C2xD4):9(C2xC4)128,628
(C2xD4):10(C2xC4) = C42.5D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4):10(C2xC4)128,636
(C2xD4):11(C2xC4) = C42.426D4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4):11(C2xC4)128,638
(C2xD4):12(C2xC4) = C42:D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4):12(C2xC4)128,643
(C2xD4):13(C2xC4) = C23.203C24φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4):13(C2xC4)128,1053
(C2xD4):14(C2xC4) = C42:13D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):14(C2xC4)128,1056
(C2xD4):15(C2xC4) = C24.198C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):15(C2xC4)128,1057
(C2xD4):16(C2xC4) = C42:14D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):16(C2xC4)128,1060
(C2xD4):17(C2xC4) = C23.215C24φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):17(C2xC4)128,1065
(C2xD4):18(C2xC4) = C23.240C24φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4):18(C2xC4)128,1090
(C2xD4):19(C2xC4) = C24.217C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):19(C2xC4)128,1095
(C2xD4):20(C2xC4) = C24.218C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):20(C2xC4)128,1096
(C2xD4):21(C2xC4) = C24.219C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):21(C2xC4)128,1098
(C2xD4):22(C2xC4) = C23.259C24φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):22(C2xC4)128,1109
(C2xD4):23(C2xC4) = C23.262C24φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4):23(C2xC4)128,1112
(C2xD4):24(C2xC4) = 2+ 1+4:5C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4):24(C2xC4)128,1629
(C2xD4):25(C2xC4) = 2- 1+4:5C4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4):25(C2xC4)128,1633
(C2xD4):26(C2xC4) = C42.275C23φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4):26(C2xC4)128,1678
(C2xD4):27(C2xC4) = C42.277C23φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4):27(C2xC4)128,1680
(C2xD4):28(C2xC4) = C4xC22wrC2φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4):28(C2xC4)128,1031
(C2xD4):29(C2xC4) = C4xC4:D4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4):29(C2xC4)128,1032
(C2xD4):30(C2xC4) = C4xC4:1D4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4):30(C2xC4)128,1038
(C2xD4):31(C2xC4) = C24.215C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4):31(C2xC4)128,1093
(C2xD4):32(C2xC4) = C2xC4xD8φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4):32(C2xC4)128,1668
(C2xD4):33(C2xC4) = C2xD8:C4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4):33(C2xC4)128,1674
(C2xD4):34(C2xC4) = C4xC8:C22φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4):34(C2xC4)128,1676
(C2xD4):35(C2xC4) = C4x2+ 1+4φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4):35(C2xC4)128,2161
(C2xD4):36(C2xC4) = C2xC23.23D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):36(C2xC4)128,1019
(C2xD4):37(C2xC4) = C2xC24.3C22φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):37(C2xC4)128,1024
(C2xD4):38(C2xC4) = C23.179C24φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):38(C2xC4)128,1029
(C2xD4):39(C2xC4) = C24.90D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):39(C2xC4)128,1040
(C2xD4):40(C2xC4) = C24.542C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):40(C2xC4)128,1043
(C2xD4):41(C2xC4) = D4xC22:C4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):41(C2xC4)128,1070
(C2xD4):42(C2xC4) = C24.549C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):42(C2xC4)128,1071
(C2xD4):43(C2xC4) = C22xC23:C4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):43(C2xC4)128,1613
(C2xD4):44(C2xC4) = C2xC23.C23φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):44(C2xC4)128,1614
(C2xD4):45(C2xC4) = C23.C24φ: C2xC4/C22C2 ⊆ Out C2xD4168+(C2xD4):45(C2xC4)128,1615
(C2xD4):46(C2xC4) = C22xD4:C4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):46(C2xC4)128,1622
(C2xD4):47(C2xC4) = C2xC23.37D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):47(C2xC4)128,1625
(C2xD4):48(C2xC4) = C2xC23.36D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4):48(C2xC4)128,1627
(C2xD4):49(C2xC4) = C24.98D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):49(C2xC4)128,1628
(C2xD4):50(C2xC4) = C22xC4wrC2φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):50(C2xC4)128,1631
(C2xD4):51(C2xC4) = C2xC42:C22φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):51(C2xC4)128,1632
(C2xD4):52(C2xC4) = C2xC22.11C24φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):52(C2xC4)128,2157
(C2xD4):53(C2xC4) = C22.14C25φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4):53(C2xC4)128,2160
(C2xD4):54(C2xC4) = C2xC4xC4oD4φ: trivial image64(C2xD4):54(C2xC4)128,2156
(C2xD4):55(C2xC4) = C2xC23.33C23φ: trivial image64(C2xD4):55(C2xC4)128,2159

Non-split extensions G=N.Q with N=C2xD4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xD4).1(C2xC4) = C42.D4φ: C2xC4/C1C2xC4 ⊆ Out C2xD4164+(C2xD4).1(C2xC4)128,134
(C2xD4).2(C2xC4) = C42.2D4φ: C2xC4/C1C2xC4 ⊆ Out C2xD4164(C2xD4).2(C2xC4)128,135
(C2xD4).3(C2xC4) = C42.375D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).3(C2xC4)128,232
(C2xD4).4(C2xC4) = C24.53D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).4(C2xC4)128,233
(C2xD4).5(C2xC4) = C42.403D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).5(C2xC4)128,234
(C2xD4).6(C2xC4) = C42.55D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).6(C2xC4)128,237
(C2xD4).7(C2xC4) = C24.54D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).7(C2xC4)128,239
(C2xD4).8(C2xC4) = C42.57D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).8(C2xC4)128,241
(C2xD4).9(C2xC4) = C24.56D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).9(C2xC4)128,242
(C2xD4).10(C2xC4) = C42.58D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).10(C2xC4)128,244
(C2xD4).11(C2xC4) = C24.58D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).11(C2xC4)128,245
(C2xD4).12(C2xC4) = C42.59D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).12(C2xC4)128,246
(C2xD4).13(C2xC4) = C24.59D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).13(C2xC4)128,248
(C2xD4).14(C2xC4) = C42.61D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).14(C2xC4)128,249
(C2xD4).15(C2xC4) = C24.60D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).15(C2xC4)128,251
(C2xD4).16(C2xC4) = C42.63D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).16(C2xC4)128,253
(C2xD4).17(C2xC4) = C2xC42.C22φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).17(C2xC4)128,254
(C2xD4).18(C2xC4) = C42.66D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).18(C2xC4)128,256
(C2xD4).19(C2xC4) = C42.405D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).19(C2xC4)128,257
(C2xD4).20(C2xC4) = C42.407D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).20(C2xC4)128,259
(C2xD4).21(C2xC4) = C42.376D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).21(C2xC4)128,261
(C2xD4).22(C2xC4) = C42.67D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).22(C2xC4)128,262
(C2xD4).23(C2xC4) = C42.69D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).23(C2xC4)128,264
(C2xD4).24(C2xC4) = C42.70D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).24(C2xC4)128,265
(C2xD4).25(C2xC4) = C42.72D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).25(C2xC4)128,267
(C2xD4).26(C2xC4) = C42.73D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).26(C2xC4)128,268
(C2xD4).27(C2xC4) = C2xC4.D8φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).27(C2xC4)128,270
(C2xD4).28(C2xC4) = C42.409D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).28(C2xC4)128,272
(C2xD4).29(C2xC4) = C42.411D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).29(C2xC4)128,275
(C2xD4).30(C2xC4) = C42.413D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).30(C2xC4)128,277
(C2xD4).31(C2xC4) = C42.78D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).31(C2xC4)128,279
(C2xD4).32(C2xC4) = C42.80D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).32(C2xC4)128,283
(C2xD4).33(C2xC4) = C42.417D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).33(C2xC4)128,285
(C2xD4).34(C2xC4) = C42.82D4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).34(C2xC4)128,287
(C2xD4).35(C2xC4) = C42.84D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).35(C2xC4)128,289
(C2xD4).36(C2xC4) = C42.87D4φ: C2xC4/C2C4 ⊆ Out C2xD464(C2xD4).36(C2xC4)128,292
(C2xD4).37(C2xC4) = C4:Q8:29C4φ: C2xC4/C2C4 ⊆ Out C2xD4164(C2xD4).37(C2xC4)128,858
(C2xD4).38(C2xC4) = C4.4D4:C4φ: C2xC4/C2C4 ⊆ Out C2xD4168+(C2xD4).38(C2xC4)128,860
(C2xD4).39(C2xC4) = C2xC42.C4φ: C2xC4/C2C4 ⊆ Out C2xD432(C2xD4).39(C2xC4)128,862
(C2xD4).40(C2xC4) = (C2xD4).135D4φ: C2xC4/C2C4 ⊆ Out C2xD4164(C2xD4).40(C2xC4)128,864
(C2xD4).41(C2xC4) = C4:Q8.C4φ: C2xC4/C2C4 ⊆ Out C2xD4328-(C2xD4).41(C2xC4)128,865
(C2xD4).42(C2xC4) = C4:1D4.C4φ: C2xC4/C2C4 ⊆ Out C2xD4168+(C2xD4).42(C2xC4)128,866
(C2xD4).43(C2xC4) = C24.5D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).43(C2xC4)128,122
(C2xD4).44(C2xC4) = C23.2C42φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).44(C2xC4)128,123
(C2xD4).45(C2xC4) = C23.3C42φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).45(C2xC4)128,124
(C2xD4).46(C2xC4) = C24.6D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).46(C2xC4)128,125
(C2xD4).47(C2xC4) = (C22xC8):C4φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).47(C2xC4)128,127
(C2xD4).48(C2xC4) = C42.45D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).48(C2xC4)128,212
(C2xD4).49(C2xC4) = C42.373D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).49(C2xC4)128,214
(C2xD4).50(C2xC4) = C42.47D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).50(C2xC4)128,215
(C2xD4).51(C2xC4) = C42.400D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).51(C2xC4)128,216
(C2xD4).52(C2xC4) = C42.315D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).52(C2xC4)128,224
(C2xD4).53(C2xC4) = C42.305D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).53(C2xC4)128,226
(C2xD4).54(C2xC4) = C42.52D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).54(C2xC4)128,227
(C2xD4).55(C2xC4) = C42.53D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).55(C2xC4)128,228
(C2xD4).56(C2xC4) = C8:15SD16φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).56(C2xC4)128,315
(C2xD4).57(C2xC4) = Q8:2M4(2)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).57(C2xC4)128,320
(C2xD4).58(C2xC4) = C8:6D8φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).58(C2xC4)128,321
(C2xD4).59(C2xC4) = C8:9SD16φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).59(C2xC4)128,322
(C2xD4).60(C2xC4) = C8:M4(2)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).60(C2xC4)128,324
(C2xD4).61(C2xC4) = C8:3M4(2)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).61(C2xC4)128,326
(C2xD4).62(C2xC4) = 2+ 1+4:2C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).62(C2xC4)128,522
(C2xD4).63(C2xC4) = 2+ 1+4.2C4φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).63(C2xC4)128,523
(C2xD4).64(C2xC4) = 2+ 1+4:3C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).64(C2xC4)128,524
(C2xD4).65(C2xC4) = 2+ 1+4:4C4φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).65(C2xC4)128,526
(C2xD4).66(C2xC4) = C24.21D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).66(C2xC4)128,588
(C2xD4).67(C2xC4) = M4(2).40D4φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).67(C2xC4)128,590
(C2xD4).68(C2xC4) = C24.22D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).68(C2xC4)128,599
(C2xD4).69(C2xC4) = (C2xD4).Q8φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).69(C2xC4)128,600
(C2xD4).70(C2xC4) = C24.72D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).70(C2xC4)128,603
(C2xD4).71(C2xC4) = C24.74D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).71(C2xC4)128,607
(C2xD4).72(C2xC4) = M4(2).43D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).72(C2xC4)128,608
(C2xD4).73(C2xC4) = (C2xSD16):15C4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).73(C2xC4)128,612
(C2xD4).74(C2xC4) = M4(2).44D4φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).74(C2xC4)128,613
(C2xD4).75(C2xC4) = M4(2):19D4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4).75(C2xC4)128,616
(C2xD4).76(C2xC4) = C24.23D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).76(C2xC4)128,617
(C2xD4).77(C2xC4) = C4.4D4:13C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).77(C2xC4)128,620
(C2xD4).78(C2xC4) = C25.C22φ: C2xC4/C2C22 ⊆ Out C2xD416(C2xD4).78(C2xC4)128,621
(C2xD4).79(C2xC4) = C24.26D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).79(C2xC4)128,622
(C2xD4).80(C2xC4) = (C2xC8):D4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4).80(C2xC4)128,623
(C2xD4).81(C2xC4) = C23.23D8φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).81(C2xC4)128,625
(C2xD4).82(C2xC4) = C24.76D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).82(C2xC4)128,627
(C2xD4).83(C2xC4) = C42:7D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).83(C2xC4)128,629
(C2xD4).84(C2xC4) = M4(2).46D4φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).84(C2xC4)128,634
(C2xD4).85(C2xC4) = M4(2).47D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4).85(C2xC4)128,635
(C2xD4).86(C2xC4) = C42.6D4φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).86(C2xC4)128,637
(C2xD4).87(C2xC4) = M4(2).48D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).87(C2xC4)128,639
(C2xD4).88(C2xC4) = C4.(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).88(C2xC4)128,641
(C2xD4).89(C2xC4) = (C2xC8):4D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4).89(C2xC4)128,642
(C2xD4).90(C2xC4) = C42.7D4φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).90(C2xC4)128,644
(C2xD4).91(C2xC4) = C24.28D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4).91(C2xC4)128,645
(C2xD4).92(C2xC4) = M4(2):21D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4).92(C2xC4)128,646
(C2xD4).93(C2xC4) = M4(2).50D4φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).93(C2xC4)128,647
(C2xD4).94(C2xC4) = D4:C4:C4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).94(C2xC4)128,657
(C2xD4).95(C2xC4) = C4.67(C4xD4)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).95(C2xC4)128,658
(C2xD4).96(C2xC4) = M4(2).24D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).96(C2xC4)128,661
(C2xD4).97(C2xC4) = C4.D4:3C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).97(C2xC4)128,663
(C2xD4).98(C2xC4) = C42.427D4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4).98(C2xC4)128,664
(C2xD4).99(C2xC4) = C2.(C8:7D4)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).99(C2xC4)128,666
(C2xD4).100(C2xC4) = C2.(C8:2D4)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).100(C2xC4)128,668
(C2xD4).101(C2xC4) = C42.428D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).101(C2xC4)128,669
(C2xD4).102(C2xC4) = C42.107D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).102(C2xC4)128,670
(C2xD4).103(C2xC4) = C42.432D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).103(C2xC4)128,689
(C2xD4).104(C2xC4) = C42.433D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).104(C2xC4)128,690
(C2xD4).105(C2xC4) = C42.110D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).105(C2xC4)128,691
(C2xD4).106(C2xC4) = C42.112D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).106(C2xC4)128,693
(C2xD4).107(C2xC4) = C43:C2φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).107(C2xC4)128,694
(C2xD4).108(C2xC4) = C42:8D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).108(C2xC4)128,695
(C2xD4).109(C2xC4) = (C2xC4):9SD16φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).109(C2xC4)128,700
(C2xD4).110(C2xC4) = (C2xC4):6D8φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).110(C2xC4)128,702
(C2xD4).111(C2xC4) = (C2xD8):10C4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).111(C2xC4)128,704
(C2xD4).112(C2xC4) = C8:(C22:C4)φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).112(C2xC4)128,705
(C2xD4).113(C2xC4) = C42.326D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).113(C2xC4)128,706
(C2xD4).114(C2xC4) = C42.116D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).114(C2xC4)128,707
(C2xD4).115(C2xC4) = M4(2).30D4φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).115(C2xC4)128,708
(C2xD4).116(C2xC4) = M4(2).31D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).116(C2xC4)128,709
(C2xD4).117(C2xC4) = M4(2).32D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).117(C2xC4)128,710
(C2xD4).118(C2xC4) = M4(2):13D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).118(C2xC4)128,712
(C2xD4).119(C2xC4) = C42.118D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).119(C2xC4)128,714
(C2xD4).120(C2xC4) = C42.119D4φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).120(C2xC4)128,715
(C2xD4).121(C2xC4) = C2xC2wrC4φ: C2xC4/C2C22 ⊆ Out C2xD416(C2xD4).121(C2xC4)128,850
(C2xD4).122(C2xC4) = C2xC23.D4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).122(C2xC4)128,851
(C2xD4).123(C2xC4) = C4oC2wrC4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4).123(C2xC4)128,852
(C2xD4).124(C2xC4) = C24.36D4φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4).124(C2xC4)128,853
(C2xD4).125(C2xC4) = C2wrC4:C2φ: C2xC4/C2C22 ⊆ Out C2xD4168+(C2xD4).125(C2xC4)128,854
(C2xD4).126(C2xC4) = C23.(C2xD4)φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).126(C2xC4)128,855
(C2xD4).127(C2xC4) = C2xC42:3C4φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).127(C2xC4)128,857
(C2xD4).128(C2xC4) = (C2xD4).137D4φ: C2xC4/C2C22 ⊆ Out C2xD4328-(C2xD4).128(C2xC4)128,867
(C2xD4).129(C2xC4) = C24.204C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).129(C2xC4)128,1067
(C2xD4).130(C2xC4) = C24.205C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).130(C2xC4)128,1069
(C2xD4).131(C2xC4) = C24.221C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).131(C2xC4)128,1104
(C2xD4).132(C2xC4) = C24.223C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).132(C2xC4)128,1106
(C2xD4).133(C2xC4) = C23.257C24φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).133(C2xC4)128,1107
(C2xD4).134(C2xC4) = C24.225C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).134(C2xC4)128,1108
(C2xD4).135(C2xC4) = C23.261C24φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).135(C2xC4)128,1111
(C2xD4).136(C2xC4) = C42.265C23φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).136(C2xC4)128,1662
(C2xD4).137(C2xC4) = C42.266C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).137(C2xC4)128,1664
(C2xD4).138(C2xC4) = C42.278C23φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).138(C2xC4)128,1681
(C2xD4).139(C2xC4) = M4(2).51D4φ: C2xC4/C2C22 ⊆ Out C2xD4164(C2xD4).139(C2xC4)128,1688
(C2xD4).140(C2xC4) = M4(2)oD8φ: C2xC4/C2C22 ⊆ Out C2xD4324(C2xD4).140(C2xC4)128,1689
(C2xD4).141(C2xC4) = C42.292C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).141(C2xC4)128,1699
(C2xD4).142(C2xC4) = C42.294C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).142(C2xC4)128,1701
(C2xD4).143(C2xC4) = C42.299C23φ: C2xC4/C2C22 ⊆ Out C2xD432(C2xD4).143(C2xC4)128,1710
(C2xD4).144(C2xC4) = C42.300C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).144(C2xC4)128,1712
(C2xD4).145(C2xC4) = C42.301C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).145(C2xC4)128,1713
(C2xD4).146(C2xC4) = C42.308C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).146(C2xC4)128,1725
(C2xD4).147(C2xC4) = C42.310C23φ: C2xC4/C2C22 ⊆ Out C2xD464(C2xD4).147(C2xC4)128,1727
(C2xD4).148(C2xC4) = C8xD8φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).148(C2xC4)128,307
(C2xD4).149(C2xC4) = C8xSD16φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).149(C2xC4)128,308
(C2xD4).150(C2xC4) = SD16:C8φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).150(C2xC4)128,310
(C2xD4).151(C2xC4) = D8:5C8φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).151(C2xC4)128,312
(C2xD4).152(C2xC4) = C8:9D8φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).152(C2xC4)128,313
(C2xD4).153(C2xC4) = C8:12SD16φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).153(C2xC4)128,314
(C2xD4).154(C2xC4) = D4.M4(2)φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).154(C2xC4)128,317
(C2xD4).155(C2xC4) = D4:2M4(2)φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).155(C2xC4)128,318
(C2xD4).156(C2xC4) = C4xC23:C4φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).156(C2xC4)128,486
(C2xD4).157(C2xC4) = C4xC4.D4φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).157(C2xC4)128,487
(C2xD4).158(C2xC4) = C23.5C42φ: C2xC4/C4C2 ⊆ Out C2xD4324(C2xD4).158(C2xC4)128,489
(C2xD4).159(C2xC4) = Q8.C42φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).159(C2xC4)128,496
(C2xD4).160(C2xC4) = D4.3C42φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).160(C2xC4)128,497
(C2xD4).161(C2xC4) = C2.(C4xD8)φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).161(C2xC4)128,594
(C2xD4).162(C2xC4) = D4:(C4:C4)φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).162(C2xC4)128,596
(C2xD4).163(C2xC4) = M4(2).42D4φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).163(C2xC4)128,598
(C2xD4).164(C2xC4) = (C2xSD16):14C4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).164(C2xC4)128,609
(C2xD4).165(C2xC4) = C4xC22.D4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).165(C2xC4)128,1033
(C2xD4).166(C2xC4) = C4xC4.4D4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).166(C2xC4)128,1035
(C2xD4).167(C2xC4) = C24.195C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).167(C2xC4)128,1054
(C2xD4).168(C2xC4) = C42.160D4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).168(C2xC4)128,1058
(C2xD4).169(C2xC4) = C23.241C24φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).169(C2xC4)128,1091
(C2xD4).170(C2xC4) = C24.220C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).170(C2xC4)128,1099
(C2xD4).171(C2xC4) = C42.264C23φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).171(C2xC4)128,1661
(C2xD4).172(C2xC4) = C42.681C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).172(C2xC4)128,1663
(C2xD4).173(C2xC4) = M4(2):22D4φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).173(C2xC4)128,1665
(C2xD4).174(C2xC4) = M4(2):23D4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).174(C2xC4)128,1667
(C2xD4).175(C2xC4) = C2xC4xSD16φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).175(C2xC4)128,1669
(C2xD4).176(C2xC4) = C2xSD16:C4φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).176(C2xC4)128,1672
(C2xD4).177(C2xC4) = C2xC8oD8φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).177(C2xC4)128,1685
(C2xD4).178(C2xC4) = C2xC8.26D4φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).178(C2xC4)128,1686
(C2xD4).179(C2xC4) = C42.283C23φ: C2xC4/C4C2 ⊆ Out C2xD4324(C2xD4).179(C2xC4)128,1687
(C2xD4).180(C2xC4) = C42.291C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).180(C2xC4)128,1698
(C2xD4).181(C2xC4) = C42.293C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).181(C2xC4)128,1700
(C2xD4).182(C2xC4) = C42.297C23φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).182(C2xC4)128,1708
(C2xD4).183(C2xC4) = C42.298C23φ: C2xC4/C4C2 ⊆ Out C2xD432(C2xD4).183(C2xC4)128,1709
(C2xD4).184(C2xC4) = C42.694C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).184(C2xC4)128,1711
(C2xD4).185(C2xC4) = C42.307C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).185(C2xC4)128,1724
(C2xD4).186(C2xC4) = C42.309C23φ: C2xC4/C4C2 ⊆ Out C2xD464(C2xD4).186(C2xC4)128,1726
(C2xD4).187(C2xC4) = C4.22C25φ: C2xC4/C4C2 ⊆ Out C2xD4324(C2xD4).187(C2xC4)128,2305
(C2xD4).188(C2xC4) = C2xD4:C8φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).188(C2xC4)128,206
(C2xD4).189(C2xC4) = C42.455D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).189(C2xC4)128,208
(C2xD4).190(C2xC4) = C42.397D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).190(C2xC4)128,209
(C2xD4).191(C2xC4) = C42.398D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).191(C2xC4)128,210
(C2xD4).192(C2xC4) = D4:M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).192(C2xC4)128,218
(C2xD4).193(C2xC4) = C42.374D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).193(C2xC4)128,220
(C2xD4).194(C2xC4) = D4:4M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).194(C2xC4)128,221
(C2xD4).195(C2xC4) = D4:5M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).195(C2xC4)128,222
(C2xD4).196(C2xC4) = C4xC4wrC2φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).196(C2xC4)128,490
(C2xD4).197(C2xC4) = D4.C42φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).197(C2xC4)128,491
(C2xD4).198(C2xC4) = C4xD4:C4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).198(C2xC4)128,492
(C2xD4).199(C2xC4) = D4:C42φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).199(C2xC4)128,494
(C2xD4).200(C2xC4) = C23.35D8φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).200(C2xC4)128,518
(C2xD4).201(C2xC4) = C24.65D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).201(C2xC4)128,520
(C2xD4).202(C2xC4) = C24.66D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).202(C2xC4)128,521
(C2xD4).203(C2xC4) = C4oD4.D4φ: C2xC4/C22C2 ⊆ Out C2xD4168+(C2xD4).203(C2xC4)128,527
(C2xD4).204(C2xC4) = (C22xQ8):C4φ: C2xC4/C22C2 ⊆ Out C2xD4328-(C2xD4).204(C2xC4)128,528
(C2xD4).205(C2xC4) = C42.98D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).205(C2xC4)128,534
(C2xD4).206(C2xC4) = C42.100D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).206(C2xC4)128,536
(C2xD4).207(C2xC4) = C42.102D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).207(C2xC4)128,538
(C2xD4).208(C2xC4) = C42:42D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).208(C2xC4)128,1022
(C2xD4).209(C2xC4) = C43:9C2φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).209(C2xC4)128,1025
(C2xD4).210(C2xC4) = C23.191C24φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).210(C2xC4)128,1041
(C2xD4).211(C2xC4) = C24.547C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).211(C2xC4)128,1050
(C2xD4).212(C2xC4) = C23.201C24φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).212(C2xC4)128,1051
(C2xD4).213(C2xC4) = C23.223C24φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).213(C2xC4)128,1073
(C2xD4).214(C2xC4) = C23.234C24φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).214(C2xC4)128,1084
(C2xD4).215(C2xC4) = C23.235C24φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).215(C2xC4)128,1085
(C2xD4).216(C2xC4) = C23.236C24φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).216(C2xC4)128,1086
(C2xD4).217(C2xC4) = C24.212C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).217(C2xC4)128,1089
(C2xD4).218(C2xC4) = C2x(C22xC8):C2φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).218(C2xC4)128,1610
(C2xD4).219(C2xC4) = C24.73(C2xC4)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).219(C2xC4)128,1611
(C2xD4).220(C2xC4) = D4o(C22:C8)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).220(C2xC4)128,1612
(C2xD4).221(C2xC4) = C23.4C24φ: C2xC4/C22C2 ⊆ Out C2xD4328-(C2xD4).221(C2xC4)128,1616
(C2xD4).222(C2xC4) = C22xC4.D4φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).222(C2xC4)128,1617
(C2xD4).223(C2xC4) = C2xM4(2).8C22φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).223(C2xC4)128,1619
(C2xD4).224(C2xC4) = M4(2).24C23φ: C2xC4/C22C2 ⊆ Out C2xD4168+(C2xD4).224(C2xC4)128,1620
(C2xD4).225(C2xC4) = M4(2).25C23φ: C2xC4/C22C2 ⊆ Out C2xD4328-(C2xD4).225(C2xC4)128,1621
(C2xD4).226(C2xC4) = C2xC23.24D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).226(C2xC4)128,1624
(C2xD4).227(C2xC4) = C42.260C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).227(C2xC4)128,1654
(C2xD4).228(C2xC4) = C42.261C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).228(C2xC4)128,1655
(C2xD4).229(C2xC4) = C42.678C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).229(C2xC4)128,1657
(C2xD4).230(C2xC4) = C2xC8:9D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).230(C2xC4)128,1659
(C2xD4).231(C2xC4) = C2xC8:6D4φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).231(C2xC4)128,1660
(C2xD4).232(C2xC4) = C42.290C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).232(C2xC4)128,1697
(C2xD4).233(C2xC4) = Q8:6M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).233(C2xC4)128,1703
(C2xD4).234(C2xC4) = C23:3M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).234(C2xC4)128,1705
(C2xD4).235(C2xC4) = D4:7M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).235(C2xC4)128,1706
(C2xD4).236(C2xC4) = C42.693C23φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).236(C2xC4)128,1707
(C2xD4).237(C2xC4) = C42.698C23φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).237(C2xC4)128,1721
(C2xD4).238(C2xC4) = D4:8M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).238(C2xC4)128,1722
(C2xD4).239(C2xC4) = Q8:7M4(2)φ: C2xC4/C22C2 ⊆ Out C2xD464(C2xD4).239(C2xC4)128,1723
(C2xD4).240(C2xC4) = C2xQ8oM4(2)φ: C2xC4/C22C2 ⊆ Out C2xD432(C2xD4).240(C2xC4)128,2304
(C2xD4).241(C2xC4) = D4xC42φ: trivial image64(C2xD4).241(C2xC4)128,1003
(C2xD4).242(C2xC4) = D4:4C42φ: trivial image64(C2xD4).242(C2xC4)128,1007
(C2xD4).243(C2xC4) = D4xC4:C4φ: trivial image64(C2xD4).243(C2xC4)128,1080
(C2xD4).244(C2xC4) = C23.231C24φ: trivial image64(C2xD4).244(C2xC4)128,1081
(C2xD4).245(C2xC4) = C4xC8oD4φ: trivial image64(C2xD4).245(C2xC4)128,1606
(C2xD4).246(C2xC4) = D4.5C42φ: trivial image64(C2xD4).246(C2xC4)128,1607
(C2xD4).247(C2xC4) = C42.674C23φ: trivial image64(C2xD4).247(C2xC4)128,1638
(C2xD4).248(C2xC4) = D4xC2xC8φ: trivial image64(C2xD4).248(C2xC4)128,1658
(C2xD4).249(C2xC4) = D4xM4(2)φ: trivial image32(C2xD4).249(C2xC4)128,1666
(C2xD4).250(C2xC4) = C8xC4oD4φ: trivial image64(C2xD4).250(C2xC4)128,1696
(C2xD4).251(C2xC4) = D4:6M4(2)φ: trivial image64(C2xD4).251(C2xC4)128,1702
(C2xD4).252(C2xC4) = C42.691C23φ: trivial image32(C2xD4).252(C2xC4)128,1704
(C2xD4).253(C2xC4) = C42.697C23φ: trivial image64(C2xD4).253(C2xC4)128,1720
(C2xD4).254(C2xC4) = C22xC8oD4φ: trivial image64(C2xD4).254(C2xC4)128,2303

׿
x
:
Z
F
o
wr
Q
<