p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2.7C2≀C4, (C2×C4).2Q16, (C2×C4).6SD16, C22.20C4≀C2, (C22×C4).34D4, (C22×Q8).3C4, C2.C42.6C4, C22.C42.9C2, C22.61(C23⋊C4), C2.5(C42.3C4), C23.161(C22⋊C4), C22.19(Q8⋊C4), C2.7(C23.31D4), C23.78C23.1C2, C22.M4(2).6C2, (C2×C4⋊C4).8C22, (C22×C4).8(C2×C4), SmallGroup(128,86)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C23 — C2×C4⋊C4 — C2.7C2≀C4 |
C1 — C22 — C23 — C2×C4⋊C4 — C2.7C2≀C4 |
Generators and relations for C2.7C2≀C4
G = < a,b,c,d,e,f | a2=d2=e2=1, b2=c2=f4=a, cbc-1=ab=ba, ac=ca, ad=da, ae=ea, af=fa, bd=db, be=eb, fbf-1=bcde, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, ef=fe >
Subgroups: 180 in 70 conjugacy classes, 20 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C2.C42, C2.C42, C22⋊C8, C2×C4⋊C4, C2×C4⋊C4, C2×M4(2), C22×Q8, C22.M4(2), C22.C42, C23.78C23, C2.7C2≀C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, SD16, Q16, C23⋊C4, Q8⋊C4, C4≀C2, C23.31D4, C2≀C4, C42.3C4, C2.7C2≀C4
Character table of C2.7C2≀C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | i | -i | -i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | -i | i | i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | 0 | 0 | √2 | 0 | 0 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | 0 | 0 | -√2 | 0 | 0 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 1+i | -1-i | 0 | 1-i | -1+i | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 1-i | -1+i | 0 | 1+i | -1-i | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -1+i | 1-i | 0 | -1-i | 1+i | 0 | 0 | complex lifted from C4≀C2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | 0 | 0 | √-2 | 0 | 0 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | 0 | 0 | -√-2 | 0 | 0 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -1-i | 1+i | 0 | -1+i | 1-i | 0 | 0 | complex lifted from C4≀C2 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ21 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 13 5 9)(2 8 6 4)(3 27 7 31)(10 32 14 28)(11 17 15 21)(12 26 16 30)(18 24 22 20)(19 29 23 25)
(1 27 5 31)(2 32 6 28)(3 9 7 13)(4 14 8 10)(11 23 15 19)(12 20 16 24)(17 29 21 25)(18 26 22 30)
(1 19)(2 6)(3 21)(4 8)(5 23)(7 17)(9 25)(10 14)(11 27)(12 16)(13 29)(15 31)(18 22)(20 24)(26 30)(28 32)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,13,5,9)(2,8,6,4)(3,27,7,31)(10,32,14,28)(11,17,15,21)(12,26,16,30)(18,24,22,20)(19,29,23,25), (1,27,5,31)(2,32,6,28)(3,9,7,13)(4,14,8,10)(11,23,15,19)(12,20,16,24)(17,29,21,25)(18,26,22,30), (1,19)(2,6)(3,21)(4,8)(5,23)(7,17)(9,25)(10,14)(11,27)(12,16)(13,29)(15,31)(18,22)(20,24)(26,30)(28,32), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,13,5,9)(2,8,6,4)(3,27,7,31)(10,32,14,28)(11,17,15,21)(12,26,16,30)(18,24,22,20)(19,29,23,25), (1,27,5,31)(2,32,6,28)(3,9,7,13)(4,14,8,10)(11,23,15,19)(12,20,16,24)(17,29,21,25)(18,26,22,30), (1,19)(2,6)(3,21)(4,8)(5,23)(7,17)(9,25)(10,14)(11,27)(12,16)(13,29)(15,31)(18,22)(20,24)(26,30)(28,32), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,13,5,9),(2,8,6,4),(3,27,7,31),(10,32,14,28),(11,17,15,21),(12,26,16,30),(18,24,22,20),(19,29,23,25)], [(1,27,5,31),(2,32,6,28),(3,9,7,13),(4,14,8,10),(11,23,15,19),(12,20,16,24),(17,29,21,25),(18,26,22,30)], [(1,19),(2,6),(3,21),(4,8),(5,23),(7,17),(9,25),(10,14),(11,27),(12,16),(13,29),(15,31),(18,22),(20,24),(26,30),(28,32)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
Matrix representation of C2.7C2≀C4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,11,0,0,0,0,3,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[8,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16,0,0,0] >;
C2.7C2≀C4 in GAP, Magma, Sage, TeX
C_2._7C_2\wr C_4
% in TeX
G:=Group("C2.7C2wrC4");
// GroupNames label
G:=SmallGroup(128,86);
// by ID
G=gap.SmallGroup(128,86);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,568,422,387,520,1690,521,248,2804]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=d^2=e^2=1,b^2=c^2=f^4=a,c*b*c^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d*e,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,e*f=f*e>;
// generators/relations
Export