Extensions 1→N→G→Q→1 with N=C2 and Q=C2≀C4

Direct product G=N×Q with N=C2 and Q=C2≀C4
dρLabelID
C2×C2≀C416C2xC2wrC4128,850


Non-split extensions G=N.Q with N=C2 and Q=C2≀C4
extensionφ:Q→Aut NdρLabelID
C2.1C2≀C4 = C24⋊C8central extension (φ=1)16C2.1C2wrC4128,48
C2.2C2≀C4 = C23.2M4(2)central extension (φ=1)32C2.2C2wrC4128,58
C2.3C2≀C4 = C24.5D4central extension (φ=1)32C2.3C2wrC4128,122
C2.4C2≀C4 = C24.D4central stem extension (φ=1)16C2.4C2wrC4128,75
C2.5C2≀C4 = C2.C2≀C4central stem extension (φ=1)32C2.5C2wrC4128,77
C2.6C2≀C4 = C23.Q16central stem extension (φ=1)32C2.6C2wrC4128,83
C2.7C2≀C4 = C2.7C2≀C4central stem extension (φ=1)32C2.7C2wrC4128,86
C2.8C2≀C4 = C42.D4central stem extension (φ=1)164+C2.8C2wrC4128,134
C2.9C2≀C4 = C42.2D4central stem extension (φ=1)164C2.9C2wrC4128,135
C2.10C2≀C4 = C42.3D4central stem extension (φ=1)164C2.10C2wrC4128,136
C2.11C2≀C4 = C42.4D4central stem extension (φ=1)164-C2.11C2wrC4128,137

׿
×
𝔽