Copied to
clipboard

G = C2wrC4order 64 = 26

Wreath product of C2 by C4

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C2wrC4, AΣL1(F16), C24:1C4, C23.1D4, (C2xC4).1D4, C23:C4:1C2, C22:C4:1C4, C4.D4:5C2, C23.1(C2xC4), C22wrC2.1C2, C2.6(C23:C4), (C2xD4).1C22, C22.9(C22:C4), 2-Sylow(AGammaL(1,16)), SmallGroup(64,32)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C2wrC4
C1C2C22C23C2xD4C22wrC2 — C2wrC4
C1C2C22C23 — C2wrC4
C1C2C22C2xD4 — C2wrC4
C1C2C22C2xD4 — C2wrC4

Generators and relations for C2wrC4
 G = < a,b,c,d,e | a2=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, eae-1=abcd, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >

Subgroups: 129 in 47 conjugacy classes, 13 normal (all characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, C23:C4, C2wrC4
2C2
4C2
4C2
4C2
4C2
2C22
2C22
2C22
2C4
2C22
4C22
4C4
4C22
4C22
4C22
4C22
4C22
4C22
4C22
8C4
2C2xC4
2C23
4D4
4D4
4D4
4C23
4C23
4C8
4C23
4C2xC4
2C22:C4
2C22:C4
2C2xD4
2M4(2)

Character table of C2wrC4

 class 12A2B2C2D2E2F4A4B4C4D8A8B
 size 1124444488888
ρ11111111111111    trivial
ρ2111-1-11111-11-1-1    linear of order 2
ρ311111111-11-1-1-1    linear of order 2
ρ4111-1-1111-1-1-111    linear of order 2
ρ511111-11-1i-1-ii-i    linear of order 4
ρ6111-1-1-11-1i1-i-ii    linear of order 4
ρ711111-11-1-i-1i-ii    linear of order 4
ρ8111-1-1-11-1-i1ii-i    linear of order 4
ρ9222002-2-200000    orthogonal lifted from D4
ρ1022200-2-2200000    orthogonal lifted from D4
ρ114-402-200000000    orthogonal faithful
ρ124-40-2200000000    orthogonal faithful
ρ1344-40000000000    orthogonal lifted from C23:C4

Permutation representations of C2wrC4
On 8 points - transitive group 8T27
Generators in S8
(2 7)
(2 7)(3 8)
(2 7)(4 5)
(1 6)(2 7)(3 8)(4 5)
(1 2 3 4)(5 6 7 8)

G:=sub<Sym(8)| (2,7), (2,7)(3,8), (2,7)(4,5), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8)>;

G:=Group( (2,7), (2,7)(3,8), (2,7)(4,5), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8) );

G=PermutationGroup([[(2,7)], [(2,7),(3,8)], [(2,7),(4,5)], [(1,6),(2,7),(3,8),(4,5)], [(1,2,3,4),(5,6,7,8)]])

G:=TransitiveGroup(8,27);

On 8 points - transitive group 8T28
Generators in S8
(1 5)(4 7)
(1 5)(2 6)(3 8)(4 7)
(1 4)(5 7)
(1 4)(2 3)(5 7)(6 8)
(1 2)(3 4)(5 6 7 8)

G:=sub<Sym(8)| (1,5)(4,7), (1,5)(2,6)(3,8)(4,7), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8)>;

G:=Group( (1,5)(4,7), (1,5)(2,6)(3,8)(4,7), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8) );

G=PermutationGroup([[(1,5),(4,7)], [(1,5),(2,6),(3,8),(4,7)], [(1,4),(5,7)], [(1,4),(2,3),(5,7),(6,8)], [(1,2),(3,4),(5,6,7,8)]])

G:=TransitiveGroup(8,28);

On 16 points - transitive group 16T130
Generators in S16
(2 11)(3 13)(4 9)(5 12)(6 14)(8 16)
(1 10)(2 11)(3 5)(4 6)(7 15)(8 16)(9 14)(12 13)
(1 15)(3 13)(5 12)(7 10)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (2,11)(3,13)(4,9)(5,12)(6,14)(8,16), (1,10)(2,11)(3,5)(4,6)(7,15)(8,16)(9,14)(12,13), (1,15)(3,13)(5,12)(7,10), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (2,11)(3,13)(4,9)(5,12)(6,14)(8,16), (1,10)(2,11)(3,5)(4,6)(7,15)(8,16)(9,14)(12,13), (1,15)(3,13)(5,12)(7,10), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(2,11),(3,13),(4,9),(5,12),(6,14),(8,16)], [(1,10),(2,11),(3,5),(4,6),(7,15),(8,16),(9,14),(12,13)], [(1,15),(3,13),(5,12),(7,10)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,130);

On 16 points - transitive group 16T157
Generators in S16
(2 13)(3 8)(7 9)(10 14)
(2 13)(3 10)(4 5)(7 9)(8 14)(11 15)
(1 6)(2 13)(3 8)(4 15)(5 11)(7 9)(10 14)(12 16)
(1 12)(2 9)(3 10)(4 11)(5 15)(6 16)(7 13)(8 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (2,13)(3,8)(7,9)(10,14), (2,13)(3,10)(4,5)(7,9)(8,14)(11,15), (1,6)(2,13)(3,8)(4,15)(5,11)(7,9)(10,14)(12,16), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (2,13)(3,8)(7,9)(10,14), (2,13)(3,10)(4,5)(7,9)(8,14)(11,15), (1,6)(2,13)(3,8)(4,15)(5,11)(7,9)(10,14)(12,16), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(2,13),(3,8),(7,9),(10,14)], [(2,13),(3,10),(4,5),(7,9),(8,14),(11,15)], [(1,6),(2,13),(3,8),(4,15),(5,11),(7,9),(10,14),(12,16)], [(1,12),(2,9),(3,10),(4,11),(5,15),(6,16),(7,13),(8,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,157);

On 16 points - transitive group 16T158
Generators in S16
(2 8)(4 9)(6 14)(11 16)
(1 10)(2 8)(3 5)(4 9)(6 14)(7 15)(11 16)(12 13)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (2,8)(4,9)(6,14)(11,16), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (2,8)(4,9)(6,14)(11,16), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(2,8),(4,9),(6,14),(11,16)], [(1,10),(2,8),(3,5),(4,9),(6,14),(7,15),(11,16),(12,13)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,158);

On 16 points - transitive group 16T159
Generators in S16
(1 6)(2 13)(3 14)(7 11)(8 12)(10 16)
(1 6)(2 11)(4 15)(5 9)(7 13)(10 16)
(1 10)(2 13)(3 12)(4 15)(5 9)(6 16)(7 11)(8 14)
(1 6)(2 7)(3 8)(4 5)(9 15)(10 16)(11 13)(12 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (1,6)(2,13)(3,14)(7,11)(8,12)(10,16), (1,6)(2,11)(4,15)(5,9)(7,13)(10,16), (1,10)(2,13)(3,12)(4,15)(5,9)(6,16)(7,11)(8,14), (1,6)(2,7)(3,8)(4,5)(9,15)(10,16)(11,13)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (1,6)(2,13)(3,14)(7,11)(8,12)(10,16), (1,6)(2,11)(4,15)(5,9)(7,13)(10,16), (1,10)(2,13)(3,12)(4,15)(5,9)(6,16)(7,11)(8,14), (1,6)(2,7)(3,8)(4,5)(9,15)(10,16)(11,13)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(1,6),(2,13),(3,14),(7,11),(8,12),(10,16)], [(1,6),(2,11),(4,15),(5,9),(7,13),(10,16)], [(1,10),(2,13),(3,12),(4,15),(5,9),(6,16),(7,11),(8,14)], [(1,6),(2,7),(3,8),(4,5),(9,15),(10,16),(11,13),(12,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,159);

On 16 points - transitive group 16T166
Generators in S16
(1 9)(2 13)(3 11)(4 15)(5 10)(6 16)(7 14)(8 12)
(1 5)(2 7)(3 6)(4 8)(9 10)(11 16)(12 15)(13 14)
(1 3)(2 4)(5 6)(7 8)(9 11)(10 16)(12 14)(13 15)
(1 2)(3 4)(5 7)(6 8)(9 13)(10 14)(11 15)(12 16)
(3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (1,9)(2,13)(3,11)(4,15)(5,10)(6,16)(7,14)(8,12), (1,5)(2,7)(3,6)(4,8)(9,10)(11,16)(12,15)(13,14), (1,3)(2,4)(5,6)(7,8)(9,11)(10,16)(12,14)(13,15), (1,2)(3,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16), (3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (1,9)(2,13)(3,11)(4,15)(5,10)(6,16)(7,14)(8,12), (1,5)(2,7)(3,6)(4,8)(9,10)(11,16)(12,15)(13,14), (1,3)(2,4)(5,6)(7,8)(9,11)(10,16)(12,14)(13,15), (1,2)(3,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16), (3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(1,9),(2,13),(3,11),(4,15),(5,10),(6,16),(7,14),(8,12)], [(1,5),(2,7),(3,6),(4,8),(9,10),(11,16),(12,15),(13,14)], [(1,3),(2,4),(5,6),(7,8),(9,11),(10,16),(12,14),(13,15)], [(1,2),(3,4),(5,7),(6,8),(9,13),(10,14),(11,15),(12,16)], [(3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,166);

On 16 points - transitive group 16T170
Generators in S16
(1 7)(2 11)(3 5)(4 6)(8 16)(9 14)(10 15)(12 13)
(2 16)(3 13)(5 12)(8 11)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (1,7)(2,11)(3,5)(4,6)(8,16)(9,14)(10,15)(12,13), (2,16)(3,13)(5,12)(8,11), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (1,7)(2,11)(3,5)(4,6)(8,16)(9,14)(10,15)(12,13), (2,16)(3,13)(5,12)(8,11), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(1,7),(2,11),(3,5),(4,6),(8,16),(9,14),(10,15),(12,13)], [(2,16),(3,13),(5,12),(8,11)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,170);

On 16 points - transitive group 16T171
Generators in S16
(1 14)(2 7)(3 5)(4 12)(6 16)(8 10)(9 13)(11 15)
(1 10)(2 11)(3 13)(4 16)(5 9)(6 12)(7 15)(8 14)
(1 6)(4 8)(10 12)(14 16)
(1 6)(2 5)(3 7)(4 8)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (1,14)(2,7)(3,5)(4,12)(6,16)(8,10)(9,13)(11,15), (1,10)(2,11)(3,13)(4,16)(5,9)(6,12)(7,15)(8,14), (1,6)(4,8)(10,12)(14,16), (1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (1,14)(2,7)(3,5)(4,12)(6,16)(8,10)(9,13)(11,15), (1,10)(2,11)(3,13)(4,16)(5,9)(6,12)(7,15)(8,14), (1,6)(4,8)(10,12)(14,16), (1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(1,14),(2,7),(3,5),(4,12),(6,16),(8,10),(9,13),(11,15)], [(1,10),(2,11),(3,13),(4,16),(5,9),(6,12),(7,15),(8,14)], [(1,6),(4,8),(10,12),(14,16)], [(1,6),(2,5),(3,7),(4,8),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,171);

On 16 points - transitive group 16T172
Generators in S16
(1 3)(2 9)(4 8)(5 10)(6 16)(7 12)(11 14)(13 15)
(1 10)(2 8)(3 5)(4 9)(6 14)(7 15)(11 16)(12 13)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)

G:=sub<Sym(16)| (1,3)(2,9)(4,8)(5,10)(6,16)(7,12)(11,14)(13,15), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;

G:=Group( (1,3)(2,9)(4,8)(5,10)(6,16)(7,12)(11,14)(13,15), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );

G=PermutationGroup([[(1,3),(2,9),(4,8),(5,10),(6,16),(7,12),(11,14),(13,15)], [(1,10),(2,8),(3,5),(4,9),(6,14),(7,15),(11,16),(12,13)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])

G:=TransitiveGroup(16,172);

C2wrC4 is a maximal subgroup of
D4wrC2  C42:4D4  C42:5D4  C42:6D4  C24:Dic3  C5:C2wrC4  C24:2F5  C24:F5
 (C2xD4).D2p: C4oC2wrC4  C24.36D4  C2wrC4:C2  C3:C2wrC4  C23.3D12  C24:5Dic3  C5:3C2wrC4  C23.3D20 ...
C2wrC4 is a maximal quotient of
C24:C8  C23.2M4(2)  C23.Q16  C2.7C2wrC4  C42.D4  C42.2D4  C42.3D4  C42.4D4  C5:C2wrC4
 C23.D4p: C24.D4  C23.3D12  C23.3D20  C23.3D28 ...
 (C2xC4).D4p: C2.C2wrC4  C3:C2wrC4  C5:3C2wrC4  C7:C2wrC4 ...
 (C23xC2p):C4: C24.5D4  C24:5Dic3  C24:2Dic5  C24:2F5  C24:Dic7 ...

Polynomial with Galois group C2wrC4 over Q
actionf(x)Disc(f)
8T27x8-4x7-x6+17x5-6x4-21x3+6x2+8x+134·56·1021
8T28x8-9x6+24x4-20x2+528·55·1012

Matrix representation of C2wrC4 in GL4(Z) generated by

-1000
0-100
000-1
00-10
,
0100
1000
0001
0010
,
1000
0100
00-10
000-1
,
-1000
0-100
00-10
000-1
,
0010
0001
1000
0-100
G:=sub<GL(4,Integers())| [-1,0,0,0,0,-1,0,0,0,0,0,-1,0,0,-1,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,0,1,0,0,0,0,-1,1,0,0,0,0,1,0,0] >;

C2wrC4 in GAP, Magma, Sage, TeX

C_2\wr C_4
% in TeX

G:=Group("C2wrC4");
// GroupNames label

G:=SmallGroup(64,32);
// by ID

G=gap.SmallGroup(64,32);
# by ID

G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,297,255,1444]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c*d,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

Export

Subgroup lattice of C2wrC4 in TeX
Character table of C2wrC4 in TeX

׿
x
:
Z
F
o
wr
Q
<