p-group, metabelian, nilpotent (class 4), monomial
Aliases: C2≀C4, AΣL1(𝔽16), C24⋊1C4, C23.1D4, (C2×C4).1D4, C23⋊C4⋊1C2, C22⋊C4⋊1C4, C4.D4⋊5C2, C23.1(C2×C4), C22≀C2.1C2, C2.6(C23⋊C4), (C2×D4).1C22, C22.9(C22⋊C4), 2-Sylow(AGammaL(1,16)), SmallGroup(64,32)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2≀C4
G = < a,b,c,d,e | a2=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, eae-1=abcd, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Character table of C2≀C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 8A | 8B | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | i | -1 | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | i | 1 | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -i | -1 | i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -i | 1 | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | -4 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ12 | 4 | -4 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ13 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
(2 7)
(2 7)(3 8)
(2 7)(4 5)
(1 6)(2 7)(3 8)(4 5)
(1 2 3 4)(5 6 7 8)
G:=sub<Sym(8)| (2,7), (2,7)(3,8), (2,7)(4,5), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8)>;
G:=Group( (2,7), (2,7)(3,8), (2,7)(4,5), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8) );
G=PermutationGroup([[(2,7)], [(2,7),(3,8)], [(2,7),(4,5)], [(1,6),(2,7),(3,8),(4,5)], [(1,2,3,4),(5,6,7,8)]])
G:=TransitiveGroup(8,27);
(1 5)(4 7)
(1 5)(2 6)(3 8)(4 7)
(1 4)(5 7)
(1 4)(2 3)(5 7)(6 8)
(1 2)(3 4)(5 6 7 8)
G:=sub<Sym(8)| (1,5)(4,7), (1,5)(2,6)(3,8)(4,7), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8)>;
G:=Group( (1,5)(4,7), (1,5)(2,6)(3,8)(4,7), (1,4)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8) );
G=PermutationGroup([[(1,5),(4,7)], [(1,5),(2,6),(3,8),(4,7)], [(1,4),(5,7)], [(1,4),(2,3),(5,7),(6,8)], [(1,2),(3,4),(5,6,7,8)]])
G:=TransitiveGroup(8,28);
(2 11)(3 13)(4 9)(5 12)(6 14)(8 16)
(1 10)(2 11)(3 5)(4 6)(7 15)(8 16)(9 14)(12 13)
(1 15)(3 13)(5 12)(7 10)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (2,11)(3,13)(4,9)(5,12)(6,14)(8,16), (1,10)(2,11)(3,5)(4,6)(7,15)(8,16)(9,14)(12,13), (1,15)(3,13)(5,12)(7,10), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (2,11)(3,13)(4,9)(5,12)(6,14)(8,16), (1,10)(2,11)(3,5)(4,6)(7,15)(8,16)(9,14)(12,13), (1,15)(3,13)(5,12)(7,10), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(2,11),(3,13),(4,9),(5,12),(6,14),(8,16)], [(1,10),(2,11),(3,5),(4,6),(7,15),(8,16),(9,14),(12,13)], [(1,15),(3,13),(5,12),(7,10)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,130);
(2 13)(3 8)(7 9)(10 14)
(2 13)(3 10)(4 5)(7 9)(8 14)(11 15)
(1 6)(2 13)(3 8)(4 15)(5 11)(7 9)(10 14)(12 16)
(1 12)(2 9)(3 10)(4 11)(5 15)(6 16)(7 13)(8 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (2,13)(3,8)(7,9)(10,14), (2,13)(3,10)(4,5)(7,9)(8,14)(11,15), (1,6)(2,13)(3,8)(4,15)(5,11)(7,9)(10,14)(12,16), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (2,13)(3,8)(7,9)(10,14), (2,13)(3,10)(4,5)(7,9)(8,14)(11,15), (1,6)(2,13)(3,8)(4,15)(5,11)(7,9)(10,14)(12,16), (1,12)(2,9)(3,10)(4,11)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(2,13),(3,8),(7,9),(10,14)], [(2,13),(3,10),(4,5),(7,9),(8,14),(11,15)], [(1,6),(2,13),(3,8),(4,15),(5,11),(7,9),(10,14),(12,16)], [(1,12),(2,9),(3,10),(4,11),(5,15),(6,16),(7,13),(8,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,157);
(2 8)(4 9)(6 14)(11 16)
(1 10)(2 8)(3 5)(4 9)(6 14)(7 15)(11 16)(12 13)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (2,8)(4,9)(6,14)(11,16), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (2,8)(4,9)(6,14)(11,16), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(2,8),(4,9),(6,14),(11,16)], [(1,10),(2,8),(3,5),(4,9),(6,14),(7,15),(11,16),(12,13)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,158);
(1 6)(2 13)(3 14)(7 11)(8 12)(10 16)
(1 6)(2 11)(4 15)(5 9)(7 13)(10 16)
(1 10)(2 13)(3 12)(4 15)(5 9)(6 16)(7 11)(8 14)
(1 6)(2 7)(3 8)(4 5)(9 15)(10 16)(11 13)(12 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,6)(2,13)(3,14)(7,11)(8,12)(10,16), (1,6)(2,11)(4,15)(5,9)(7,13)(10,16), (1,10)(2,13)(3,12)(4,15)(5,9)(6,16)(7,11)(8,14), (1,6)(2,7)(3,8)(4,5)(9,15)(10,16)(11,13)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,6)(2,13)(3,14)(7,11)(8,12)(10,16), (1,6)(2,11)(4,15)(5,9)(7,13)(10,16), (1,10)(2,13)(3,12)(4,15)(5,9)(6,16)(7,11)(8,14), (1,6)(2,7)(3,8)(4,5)(9,15)(10,16)(11,13)(12,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,6),(2,13),(3,14),(7,11),(8,12),(10,16)], [(1,6),(2,11),(4,15),(5,9),(7,13),(10,16)], [(1,10),(2,13),(3,12),(4,15),(5,9),(6,16),(7,11),(8,14)], [(1,6),(2,7),(3,8),(4,5),(9,15),(10,16),(11,13),(12,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,159);
(1 9)(2 13)(3 11)(4 15)(5 10)(6 16)(7 14)(8 12)
(1 5)(2 7)(3 6)(4 8)(9 10)(11 16)(12 15)(13 14)
(1 3)(2 4)(5 6)(7 8)(9 11)(10 16)(12 14)(13 15)
(1 2)(3 4)(5 7)(6 8)(9 13)(10 14)(11 15)(12 16)
(3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,9)(2,13)(3,11)(4,15)(5,10)(6,16)(7,14)(8,12), (1,5)(2,7)(3,6)(4,8)(9,10)(11,16)(12,15)(13,14), (1,3)(2,4)(5,6)(7,8)(9,11)(10,16)(12,14)(13,15), (1,2)(3,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16), (3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,9)(2,13)(3,11)(4,15)(5,10)(6,16)(7,14)(8,12), (1,5)(2,7)(3,6)(4,8)(9,10)(11,16)(12,15)(13,14), (1,3)(2,4)(5,6)(7,8)(9,11)(10,16)(12,14)(13,15), (1,2)(3,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16), (3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,9),(2,13),(3,11),(4,15),(5,10),(6,16),(7,14),(8,12)], [(1,5),(2,7),(3,6),(4,8),(9,10),(11,16),(12,15),(13,14)], [(1,3),(2,4),(5,6),(7,8),(9,11),(10,16),(12,14),(13,15)], [(1,2),(3,4),(5,7),(6,8),(9,13),(10,14),(11,15),(12,16)], [(3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,166);
(1 7)(2 11)(3 5)(4 6)(8 16)(9 14)(10 15)(12 13)
(2 16)(3 13)(5 12)(8 11)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,7)(2,11)(3,5)(4,6)(8,16)(9,14)(10,15)(12,13), (2,16)(3,13)(5,12)(8,11), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,7)(2,11)(3,5)(4,6)(8,16)(9,14)(10,15)(12,13), (2,16)(3,13)(5,12)(8,11), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,7),(2,11),(3,5),(4,6),(8,16),(9,14),(10,15),(12,13)], [(2,16),(3,13),(5,12),(8,11)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,170);
(1 14)(2 7)(3 5)(4 12)(6 16)(8 10)(9 13)(11 15)
(1 10)(2 11)(3 13)(4 16)(5 9)(6 12)(7 15)(8 14)
(1 6)(4 8)(10 12)(14 16)
(1 6)(2 5)(3 7)(4 8)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,14)(2,7)(3,5)(4,12)(6,16)(8,10)(9,13)(11,15), (1,10)(2,11)(3,13)(4,16)(5,9)(6,12)(7,15)(8,14), (1,6)(4,8)(10,12)(14,16), (1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,14)(2,7)(3,5)(4,12)(6,16)(8,10)(9,13)(11,15), (1,10)(2,11)(3,13)(4,16)(5,9)(6,12)(7,15)(8,14), (1,6)(4,8)(10,12)(14,16), (1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,14),(2,7),(3,5),(4,12),(6,16),(8,10),(9,13),(11,15)], [(1,10),(2,11),(3,13),(4,16),(5,9),(6,12),(7,15),(8,14)], [(1,6),(4,8),(10,12),(14,16)], [(1,6),(2,5),(3,7),(4,8),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,171);
(1 3)(2 9)(4 8)(5 10)(6 16)(7 12)(11 14)(13 15)
(1 10)(2 8)(3 5)(4 9)(6 14)(7 15)(11 16)(12 13)
(2 16)(4 14)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,3)(2,9)(4,8)(5,10)(6,16)(7,12)(11,14)(13,15), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,3)(2,9)(4,8)(5,10)(6,16)(7,12)(11,14)(13,15), (1,10)(2,8)(3,5)(4,9)(6,14)(7,15)(11,16)(12,13), (2,16)(4,14)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,3),(2,9),(4,8),(5,10),(6,16),(7,12),(11,14),(13,15)], [(1,10),(2,8),(3,5),(4,9),(6,14),(7,15),(11,16),(12,13)], [(2,16),(4,14),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,172);
C2≀C4 is a maximal subgroup of
D4≀C2 C42⋊4D4 C42⋊5D4 C42⋊6D4 C24⋊Dic3 C5⋊C2≀C4 C24⋊2F5 C24⋊F5
(C2×D4).D2p: C4○C2≀C4 C24.36D4 C2≀C4⋊C2 C3⋊C2≀C4 C23.3D12 C24⋊5Dic3 C5⋊3C2≀C4 C23.3D20 ...
C2≀C4 is a maximal quotient of
C24⋊C8 C23.2M4(2) C23.Q16 C2.7C2≀C4 C42.D4 C42.2D4 C42.3D4 C42.4D4 C5⋊C2≀C4
C23.D4p: C24.D4 C23.3D12 C23.3D20 C23.3D28 ...
(C2×C4).D4p: C2.C2≀C4 C3⋊C2≀C4 C5⋊3C2≀C4 C7⋊C2≀C4 ...
(C23×C2p)⋊C4: C24.5D4 C24⋊5Dic3 C24⋊2Dic5 C24⋊2F5 C24⋊Dic7 ...
action | f(x) | Disc(f) |
---|---|---|
8T27 | x8-4x7-x6+17x5-6x4-21x3+6x2+8x+1 | 34·56·1021 |
8T28 | x8-9x6+24x4-20x2+5 | 28·55·1012 |
Matrix representation of C2≀C4 ►in GL4(ℤ) generated by
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
G:=sub<GL(4,Integers())| [-1,0,0,0,0,-1,0,0,0,0,0,-1,0,0,-1,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,0,1,0,0,0,0,-1,1,0,0,0,0,1,0,0] >;
C2≀C4 in GAP, Magma, Sage, TeX
C_2\wr C_4
% in TeX
G:=Group("C2wrC4");
// GroupNames label
G:=SmallGroup(64,32);
// by ID
G=gap.SmallGroup(64,32);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,362,297,255,1444]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c*d,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations
Export
Subgroup lattice of C2≀C4 in TeX
Character table of C2≀C4 in TeX