Copied to
clipboard

G = C4⋊C4⋊C8order 128 = 27

The semidirect product of C4⋊C4 and C8 acting via C8/C2=C4

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4⋊C4⋊C8, (C2×C4).99D8, C2.4(D4⋊C8), C2.3(Q8⋊C8), (C2×C4).45Q16, C22.29C4≀C2, (C2×C4).82SD16, (C2×C4).7M4(2), (C22×C4).632D4, C2.1(C4.10D8), C22.46(C22⋊C8), C22.31(C23⋊C4), (C2×C42).119C22, C2.2(C22.SD16), C22.36(D4⋊C4), C23.210(C22⋊C4), C22.25(Q8⋊C4), C2.1(C23.31D4), C22.7C42.1C2, C22.13(C4.10D4), C23.65C23.1C2, C2.1(C42.2C22), C2.3(C22.M4(2)), (C2×C4⋊C4).2C4, (C2×C4).7(C2×C8), (C22×C4).143(C2×C4), SmallGroup(128,3)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C4⋊C4⋊C8
C1C2C22C23C22×C4C2×C42C23.65C23 — C4⋊C4⋊C8
C1C22C2×C4 — C4⋊C4⋊C8
C1C23C2×C42 — C4⋊C4⋊C8
C1C22C23C2×C42 — C4⋊C4⋊C8

Generators and relations for C4⋊C4⋊C8
 G = < a,b,c | a4=b4=c8=1, bab-1=a-1, cac-1=ab2, cbc-1=ab >

Subgroups: 168 in 79 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C4, C22, C8, C2×C4, C2×C4, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.7C42, C23.65C23, C4⋊C4⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), D8, SD16, Q16, C22⋊C8, C23⋊C4, C4.10D4, D4⋊C4, Q8⋊C4, C4≀C2, C22.M4(2), D4⋊C8, Q8⋊C8, C22.SD16, C23.31D4, C42.2C22, C4.10D8, C4⋊C4⋊C8

Smallest permutation representation of C4⋊C4⋊C8
Regular action on 128 points
Generators in S128
(1 63 87 119)(2 34 88 30)(3 57 81 113)(4 36 82 32)(5 59 83 115)(6 38 84 26)(7 61 85 117)(8 40 86 28)(9 67 90 97)(10 42 91 128)(11 69 92 99)(12 44 93 122)(13 71 94 101)(14 46 95 124)(15 65 96 103)(16 48 89 126)(17 45 79 123)(18 72 80 102)(19 47 73 125)(20 66 74 104)(21 41 75 127)(22 68 76 98)(23 43 77 121)(24 70 78 100)(25 105 37 53)(27 107 39 55)(29 109 33 49)(31 111 35 51)(50 120 110 64)(52 114 112 58)(54 116 106 60)(56 118 108 62)
(1 43 109 69)(2 24 110 12)(3 101 111 123)(4 95 112 80)(5 47 105 65)(6 20 106 16)(7 97 107 127)(8 91 108 76)(9 27 21 117)(10 56 22 86)(11 63 23 33)(13 31 17 113)(14 52 18 82)(15 59 19 37)(25 96 115 73)(26 66 116 48)(28 128 118 98)(29 92 119 77)(30 70 120 44)(32 124 114 102)(34 100 64 122)(35 79 57 94)(36 46 58 72)(38 104 60 126)(39 75 61 90)(40 42 62 68)(41 85 67 55)(45 81 71 51)(49 99 87 121)(50 93 88 78)(53 103 83 125)(54 89 84 74)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,63,87,119)(2,34,88,30)(3,57,81,113)(4,36,82,32)(5,59,83,115)(6,38,84,26)(7,61,85,117)(8,40,86,28)(9,67,90,97)(10,42,91,128)(11,69,92,99)(12,44,93,122)(13,71,94,101)(14,46,95,124)(15,65,96,103)(16,48,89,126)(17,45,79,123)(18,72,80,102)(19,47,73,125)(20,66,74,104)(21,41,75,127)(22,68,76,98)(23,43,77,121)(24,70,78,100)(25,105,37,53)(27,107,39,55)(29,109,33,49)(31,111,35,51)(50,120,110,64)(52,114,112,58)(54,116,106,60)(56,118,108,62), (1,43,109,69)(2,24,110,12)(3,101,111,123)(4,95,112,80)(5,47,105,65)(6,20,106,16)(7,97,107,127)(8,91,108,76)(9,27,21,117)(10,56,22,86)(11,63,23,33)(13,31,17,113)(14,52,18,82)(15,59,19,37)(25,96,115,73)(26,66,116,48)(28,128,118,98)(29,92,119,77)(30,70,120,44)(32,124,114,102)(34,100,64,122)(35,79,57,94)(36,46,58,72)(38,104,60,126)(39,75,61,90)(40,42,62,68)(41,85,67,55)(45,81,71,51)(49,99,87,121)(50,93,88,78)(53,103,83,125)(54,89,84,74), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)>;

G:=Group( (1,63,87,119)(2,34,88,30)(3,57,81,113)(4,36,82,32)(5,59,83,115)(6,38,84,26)(7,61,85,117)(8,40,86,28)(9,67,90,97)(10,42,91,128)(11,69,92,99)(12,44,93,122)(13,71,94,101)(14,46,95,124)(15,65,96,103)(16,48,89,126)(17,45,79,123)(18,72,80,102)(19,47,73,125)(20,66,74,104)(21,41,75,127)(22,68,76,98)(23,43,77,121)(24,70,78,100)(25,105,37,53)(27,107,39,55)(29,109,33,49)(31,111,35,51)(50,120,110,64)(52,114,112,58)(54,116,106,60)(56,118,108,62), (1,43,109,69)(2,24,110,12)(3,101,111,123)(4,95,112,80)(5,47,105,65)(6,20,106,16)(7,97,107,127)(8,91,108,76)(9,27,21,117)(10,56,22,86)(11,63,23,33)(13,31,17,113)(14,52,18,82)(15,59,19,37)(25,96,115,73)(26,66,116,48)(28,128,118,98)(29,92,119,77)(30,70,120,44)(32,124,114,102)(34,100,64,122)(35,79,57,94)(36,46,58,72)(38,104,60,126)(39,75,61,90)(40,42,62,68)(41,85,67,55)(45,81,71,51)(49,99,87,121)(50,93,88,78)(53,103,83,125)(54,89,84,74), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,63,87,119),(2,34,88,30),(3,57,81,113),(4,36,82,32),(5,59,83,115),(6,38,84,26),(7,61,85,117),(8,40,86,28),(9,67,90,97),(10,42,91,128),(11,69,92,99),(12,44,93,122),(13,71,94,101),(14,46,95,124),(15,65,96,103),(16,48,89,126),(17,45,79,123),(18,72,80,102),(19,47,73,125),(20,66,74,104),(21,41,75,127),(22,68,76,98),(23,43,77,121),(24,70,78,100),(25,105,37,53),(27,107,39,55),(29,109,33,49),(31,111,35,51),(50,120,110,64),(52,114,112,58),(54,116,106,60),(56,118,108,62)], [(1,43,109,69),(2,24,110,12),(3,101,111,123),(4,95,112,80),(5,47,105,65),(6,20,106,16),(7,97,107,127),(8,91,108,76),(9,27,21,117),(10,56,22,86),(11,63,23,33),(13,31,17,113),(14,52,18,82),(15,59,19,37),(25,96,115,73),(26,66,116,48),(28,128,118,98),(29,92,119,77),(30,70,120,44),(32,124,114,102),(34,100,64,122),(35,79,57,94),(36,46,58,72),(38,104,60,126),(39,75,61,90),(40,42,62,68),(41,85,67,55),(45,81,71,51),(49,99,87,121),(50,93,88,78),(53,103,83,125),(54,89,84,74)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I4J4K4L4M4N8A···8P
order12···24···44444448···8
size11···12···24488884···4

38 irreducible representations

dim1111122222244
type+++++-+-
imageC1C2C2C4C8D4M4(2)D8SD16Q16C4≀C2C23⋊C4C4.10D4
kernelC4⋊C4⋊C8C22.7C42C23.65C23C2×C4⋊C4C4⋊C4C22×C4C2×C4C2×C4C2×C4C2×C4C22C22C22
# reps1214822242811

Matrix representation of C4⋊C4⋊C8 in GL6(𝔽17)

1600000
0160000
004400
0001300
0000016
000010
,
7160000
14100000
00141000
006300
00001016
0000167
,
14150000
1530000
0041000
000100
00001113
0000136

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,4,13,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[7,14,0,0,0,0,16,10,0,0,0,0,0,0,14,6,0,0,0,0,10,3,0,0,0,0,0,0,10,16,0,0,0,0,16,7],[14,15,0,0,0,0,15,3,0,0,0,0,0,0,4,0,0,0,0,0,10,1,0,0,0,0,0,0,11,13,0,0,0,0,13,6] >;

C4⋊C4⋊C8 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes C_8
% in TeX

G:=Group("C4:C4:C8");
// GroupNames label

G:=SmallGroup(128,3);
// by ID

G=gap.SmallGroup(128,3);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,2,56,85,120,422,387,184,794,248]);
// Polycyclic

G:=Group<a,b,c|a^4=b^4=c^8=1,b*a*b^-1=a^-1,c*a*c^-1=a*b^2,c*b*c^-1=a*b>;
// generators/relations

׿
×
𝔽