Copied to
clipboard

G = (C2×Q8)⋊C8order 128 = 27

1st semidirect product of C2×Q8 and C8 acting via C8/C2=C4

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×Q8)⋊1C8, C2.4(Q8⋊C8), (C2×C4).46Q16, C22.30C4≀C2, C2.4(C23⋊C8), (C2×C4).83SD16, (C2×C4).8M4(2), (C22×Q8).1C4, (C22×C4).633D4, C2.1(C4.6Q16), C22.47(C22⋊C8), C22.32(C23⋊C4), (C2×C42).120C22, C23.211(C22⋊C4), C22.26(Q8⋊C4), C2.2(C23.31D4), C22.22(C4.D4), C22.7C42.2C2, C23.67C23.1C2, C2.2(C42.C22), (C2×C4⋊C4).3C4, (C2×C4).8(C2×C8), (C22×C4).144(C2×C4), SmallGroup(128,4)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — (C2×Q8)⋊C8
C1C2C22C23C22×C4C2×C42C23.67C23 — (C2×Q8)⋊C8
C1C22C2×C4 — (C2×Q8)⋊C8
C1C23C2×C42 — (C2×Q8)⋊C8
C1C22C23C2×C42 — (C2×Q8)⋊C8

Generators and relations for (C2×Q8)⋊C8
 G = < a,b,c,d | a2=b4=d8=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=ab-1, dcd-1=bc >

Subgroups: 184 in 83 conjugacy classes, 34 normal (16 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2×C42, C2×C4⋊C4, C22×C8, C22×Q8, C22.7C42, C23.67C23, (C2×Q8)⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C22⋊C4, C2×C8, M4(2), SD16, Q16, C22⋊C8, C23⋊C4, C4.D4, Q8⋊C4, C4≀C2, C23⋊C8, Q8⋊C8, C23.31D4, C42.C22, C4.6Q16, (C2×Q8)⋊C8

Smallest permutation representation of (C2×Q8)⋊C8
Regular action on 128 points
Generators in S128
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 125)(10 126)(11 127)(12 128)(13 121)(14 122)(15 123)(16 124)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 105)(24 106)(25 61)(26 62)(27 63)(28 64)(29 57)(30 58)(31 59)(32 60)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 103)(50 104)(51 97)(52 98)(53 99)(54 100)(55 101)(56 102)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(71 73)(72 74)(81 90)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 89)
(1 63 23 51)(2 98 24 28)(3 57 17 53)(4 100 18 30)(5 59 19 55)(6 102 20 32)(7 61 21 49)(8 104 22 26)(9 88 39 71)(10 74 40 90)(11 82 33 65)(12 76 34 92)(13 84 35 67)(14 78 36 94)(15 86 37 69)(16 80 38 96)(25 111 103 119)(27 105 97 113)(29 107 99 115)(31 109 101 117)(41 75 127 91)(42 83 128 66)(43 77 121 93)(44 85 122 68)(45 79 123 95)(46 87 124 70)(47 73 125 89)(48 81 126 72)(50 112 62 120)(52 106 64 114)(54 108 58 116)(56 110 60 118)
(1 121 23 43)(2 78 24 94)(3 15 17 37)(4 70 18 87)(5 125 19 47)(6 74 20 90)(7 11 21 33)(8 66 22 83)(9 109 39 117)(10 32 40 102)(12 62 34 50)(13 105 35 113)(14 28 36 98)(16 58 38 54)(25 75 103 91)(26 42 104 128)(27 67 97 84)(29 79 99 95)(30 46 100 124)(31 71 101 88)(41 119 127 111)(44 52 122 64)(45 115 123 107)(48 56 126 60)(49 82 61 65)(51 93 63 77)(53 86 57 69)(55 89 59 73)(68 106 85 114)(72 110 81 118)(76 112 92 120)(80 108 96 116)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,125)(10,126)(11,127)(12,128)(13,121)(14,122)(15,123)(16,124)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,105)(24,106)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,103)(50,104)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,73)(72,74)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89), (1,63,23,51)(2,98,24,28)(3,57,17,53)(4,100,18,30)(5,59,19,55)(6,102,20,32)(7,61,21,49)(8,104,22,26)(9,88,39,71)(10,74,40,90)(11,82,33,65)(12,76,34,92)(13,84,35,67)(14,78,36,94)(15,86,37,69)(16,80,38,96)(25,111,103,119)(27,105,97,113)(29,107,99,115)(31,109,101,117)(41,75,127,91)(42,83,128,66)(43,77,121,93)(44,85,122,68)(45,79,123,95)(46,87,124,70)(47,73,125,89)(48,81,126,72)(50,112,62,120)(52,106,64,114)(54,108,58,116)(56,110,60,118), (1,121,23,43)(2,78,24,94)(3,15,17,37)(4,70,18,87)(5,125,19,47)(6,74,20,90)(7,11,21,33)(8,66,22,83)(9,109,39,117)(10,32,40,102)(12,62,34,50)(13,105,35,113)(14,28,36,98)(16,58,38,54)(25,75,103,91)(26,42,104,128)(27,67,97,84)(29,79,99,95)(30,46,100,124)(31,71,101,88)(41,119,127,111)(44,52,122,64)(45,115,123,107)(48,56,126,60)(49,82,61,65)(51,93,63,77)(53,86,57,69)(55,89,59,73)(68,106,85,114)(72,110,81,118)(76,112,92,120)(80,108,96,116), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)>;

G:=Group( (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,125)(10,126)(11,127)(12,128)(13,121)(14,122)(15,123)(16,124)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,105)(24,106)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,103)(50,104)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(71,73)(72,74)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89), (1,63,23,51)(2,98,24,28)(3,57,17,53)(4,100,18,30)(5,59,19,55)(6,102,20,32)(7,61,21,49)(8,104,22,26)(9,88,39,71)(10,74,40,90)(11,82,33,65)(12,76,34,92)(13,84,35,67)(14,78,36,94)(15,86,37,69)(16,80,38,96)(25,111,103,119)(27,105,97,113)(29,107,99,115)(31,109,101,117)(41,75,127,91)(42,83,128,66)(43,77,121,93)(44,85,122,68)(45,79,123,95)(46,87,124,70)(47,73,125,89)(48,81,126,72)(50,112,62,120)(52,106,64,114)(54,108,58,116)(56,110,60,118), (1,121,23,43)(2,78,24,94)(3,15,17,37)(4,70,18,87)(5,125,19,47)(6,74,20,90)(7,11,21,33)(8,66,22,83)(9,109,39,117)(10,32,40,102)(12,62,34,50)(13,105,35,113)(14,28,36,98)(16,58,38,54)(25,75,103,91)(26,42,104,128)(27,67,97,84)(29,79,99,95)(30,46,100,124)(31,71,101,88)(41,119,127,111)(44,52,122,64)(45,115,123,107)(48,56,126,60)(49,82,61,65)(51,93,63,77)(53,86,57,69)(55,89,59,73)(68,106,85,114)(72,110,81,118)(76,112,92,120)(80,108,96,116), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,125),(10,126),(11,127),(12,128),(13,121),(14,122),(15,123),(16,124),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,105),(24,106),(25,61),(26,62),(27,63),(28,64),(29,57),(30,58),(31,59),(32,60),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,103),(50,104),(51,97),(52,98),(53,99),(54,100),(55,101),(56,102),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(71,73),(72,74),(81,90),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,89)], [(1,63,23,51),(2,98,24,28),(3,57,17,53),(4,100,18,30),(5,59,19,55),(6,102,20,32),(7,61,21,49),(8,104,22,26),(9,88,39,71),(10,74,40,90),(11,82,33,65),(12,76,34,92),(13,84,35,67),(14,78,36,94),(15,86,37,69),(16,80,38,96),(25,111,103,119),(27,105,97,113),(29,107,99,115),(31,109,101,117),(41,75,127,91),(42,83,128,66),(43,77,121,93),(44,85,122,68),(45,79,123,95),(46,87,124,70),(47,73,125,89),(48,81,126,72),(50,112,62,120),(52,106,64,114),(54,108,58,116),(56,110,60,118)], [(1,121,23,43),(2,78,24,94),(3,15,17,37),(4,70,18,87),(5,125,19,47),(6,74,20,90),(7,11,21,33),(8,66,22,83),(9,109,39,117),(10,32,40,102),(12,62,34,50),(13,105,35,113),(14,28,36,98),(16,58,38,54),(25,75,103,91),(26,42,104,128),(27,67,97,84),(29,79,99,95),(30,46,100,124),(31,71,101,88),(41,119,127,111),(44,52,122,64),(45,115,123,107),(48,56,126,60),(49,82,61,65),(51,93,63,77),(53,86,57,69),(55,89,59,73),(68,106,85,114),(72,110,81,118),(76,112,92,120),(80,108,96,116)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I4J4K4L4M4N8A···8P
order12···24···44444448···8
size11···12···24488884···4

38 irreducible representations

dim1111112222244
type++++-++
imageC1C2C2C4C4C8D4M4(2)SD16Q16C4≀C2C23⋊C4C4.D4
kernel(C2×Q8)⋊C8C22.7C42C23.67C23C2×C4⋊C4C22×Q8C2×Q8C22×C4C2×C4C2×C4C2×C4C22C22C22
# reps1212282244811

Matrix representation of (C2×Q8)⋊C8 in GL6(𝔽17)

100000
010000
001000
000100
0000160
0000016
,
1600000
0160000
001200
00161600
0000013
0000130
,
0160000
1600000
0013900
000400
0000111
0000616
,
1060000
1170000
0001400
007000
0000610
0000106

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16,0,0,0,0,0,0,0,13,0,0,0,0,13,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,13,0,0,0,0,0,9,4,0,0,0,0,0,0,1,6,0,0,0,0,11,16],[10,11,0,0,0,0,6,7,0,0,0,0,0,0,0,7,0,0,0,0,14,0,0,0,0,0,0,0,6,10,0,0,0,0,10,6] >;

(C2×Q8)⋊C8 in GAP, Magma, Sage, TeX

(C_2\times Q_8)\rtimes C_8
% in TeX

G:=Group("(C2xQ8):C8");
// GroupNames label

G:=SmallGroup(128,4);
// by ID

G=gap.SmallGroup(128,4);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,2,56,85,232,422,387,184,794,248]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=d^8=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=a*b^-1,d*c*d^-1=b*c>;
// generators/relations

׿
×
𝔽