Copied to
clipboard

G = C8:C4:5C4order 128 = 27

5th semidirect product of C8:C4 and C4 acting faithfully

p-group, metabelian, nilpotent (class 5), monomial

Aliases: C8:C4:5C4, (C2xD4).7D4, C42.5(C2xC4), C42.C2:1C4, C42:C4.2C2, C4:1D4.4C22, C2.6(C42:3C4), C22.22(C23:C4), C42.29C22.3C2, (C2xC4).38(C22:C4), SmallGroup(128,144)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C8:C4:5C4
C1C2C22C2xC4C2xD4C4:1D4C42.29C22 — C8:C4:5C4
C1C2C22C2xC4C42 — C8:C4:5C4
C1C2C22C2xC4C4:1D4 — C8:C4:5C4
C1C2C2C22C2xC4C4:1D4 — C8:C4:5C4

Generators and relations for C8:C4:5C4
 G = < a,b,c | a8=b4=c4=1, bab-1=a5, cac-1=ab, cbc-1=a6b >

Subgroups: 184 in 47 conjugacy classes, 14 normal (10 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, C23:C4, C42:3C4, C8:C4:5C4
2C2
8C2
8C2
2C4
4C22
4C22
4C4
8C4
8C22
8C22
16C4
16C4
2C2xC4
2C23
2C23
4C8
4C2xC4
4D4
4D4
8C2xC4
8D4
8D4
8C2xC4
2C4:C4
2C2xC8
4C2xD4
4C22:C4
4C4:C4
4C22:C4
2D4:C4
2C23:C4
2D4:C4
2C23:C4

Character table of C8:C4:5C4

 class 12A2B2C2D4A4B4C4D4E4F4G8A8B
 size 1128848161616161688
ρ111111111111111    trivial
ρ21111111-111-1-1-1-1    linear of order 2
ρ311111111-1-11-1-1-1    linear of order 2
ρ41111111-1-1-1-1111    linear of order 2
ρ5111-1-111-ii-ii1-1-1    linear of order 4
ρ6111-1-111ii-i-i-111    linear of order 4
ρ7111-1-111-i-iii-111    linear of order 4
ρ8111-1-111i-ii-i1-1-1    linear of order 4
ρ92222-22-20000000    orthogonal lifted from D4
ρ10222-222-20000000    orthogonal lifted from D4
ρ1144400-400000000    orthogonal lifted from C23:C4
ρ1244-4000000000-2i2i    complex lifted from C42:3C4
ρ1344-40000000002i-2i    complex lifted from C42:3C4
ρ148-8000000000000    orthogonal faithful

Permutation representations of C8:C4:5C4
On 16 points - transitive group 16T375
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(9 11 13 15)(10 16 14 12)
(1 13)(2 10 8 12)(3 11 7 15)(4 16 6 14)(5 9)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,11,13,15)(10,16,14,12), (1,13)(2,10,8,12)(3,11,7,15)(4,16,6,14)(5,9)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(9,11,13,15)(10,16,14,12), (1,13)(2,10,8,12)(3,11,7,15)(4,16,6,14)(5,9) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(9,11,13,15),(10,16,14,12)], [(1,13),(2,10,8,12),(3,11,7,15),(4,16,6,14),(5,9)]])

G:=TransitiveGroup(16,375);

Matrix representation of C8:C4:5C4 in GL8(Z)

00-100000
00010000
0-1000000
-10000000
00000001
00000010
0000-1000
00000100
,
-10000000
0-1000000
00100000
00010000
00000-100
00001000
0000000-1
00000010
,
00001000
00000100
00000010
00000001
10000000
0-1000000
00010000
00100000

G:=sub<GL(8,Integers())| [0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0],[0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0] >;

C8:C4:5C4 in GAP, Magma, Sage, TeX

C_8\rtimes C_4\rtimes_5C_4
% in TeX

G:=Group("C8:C4:5C4");
// GroupNames label

G:=SmallGroup(128,144);
// by ID

G=gap.SmallGroup(128,144);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,-2,-2,56,85,232,422,387,520,794,745,1684,1411,375,172,4037]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=c^4=1,b*a*b^-1=a^5,c*a*c^-1=a*b,c*b*c^-1=a^6*b>;
// generators/relations

Export

Subgroup lattice of C8:C4:5C4 in TeX
Character table of C8:C4:5C4 in TeX

׿
x
:
Z
F
o
wr
Q
<