p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.6D8, D4⋊3SD16, C42.200C23, D42.2C2, D4⋊C8⋊20C2, (C4×C8)⋊3C22, C4⋊C4.54D4, C4.28(C2×D8), C4⋊Q8⋊2C22, C4⋊C8⋊43C22, D4⋊Q8⋊1C2, C4.4D8⋊4C2, C4.D8⋊8C2, (C2×D4).254D4, C4.31(C2×SD16), D4.D4⋊30C2, C4.61(C8⋊C22), (C4×D4).31C22, C2.14(C22⋊D8), C4⋊1D4.17C22, C2.14(C22⋊SD16), C22.166C22≀C2, C2.12(D4.9D4), (C2×C4).957(C2×D4), SmallGroup(128,371)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.D8
G = < a,b,c,d | a4=b2=c8=1, d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a-1b, dbd-1=ab, dcd-1=a2c-1 >
Subgroups: 464 in 154 conjugacy classes, 38 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C24, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C4×D4, C22≀C2, C4⋊D4, C4⋊1D4, C4⋊Q8, C2×SD16, C22×D4, D4⋊C8, C4.D8, D4.D4, D4⋊Q8, C4.4D8, D42, D4.D8
Quotients: C1, C2, C22, D4, C23, D8, SD16, C2×D4, C22≀C2, C2×D8, C2×SD16, C8⋊C22, C22⋊D8, C22⋊SD16, D4.9D4, D4.D8
Character table of D4.D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | -√2 | √2 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | -√2 | √2 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | √2 | -√2 | 0 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | √2 | -√2 | 0 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | 0 | 0 | -√-2 | complex lifted from SD16 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | √-2 | complex lifted from SD16 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
(1 9 19 25)(2 10 20 26)(3 11 21 27)(4 12 22 28)(5 13 23 29)(6 14 24 30)(7 15 17 31)(8 16 18 32)
(1 29)(2 6)(3 15)(4 18)(5 25)(7 11)(8 22)(9 23)(10 30)(12 16)(13 19)(14 26)(17 27)(20 24)(21 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 26 19 10)(2 9 20 25)(3 32 21 16)(4 15 22 31)(5 30 23 14)(6 13 24 29)(7 28 17 12)(8 11 18 27)
G:=sub<Sym(32)| (1,9,19,25)(2,10,20,26)(3,11,21,27)(4,12,22,28)(5,13,23,29)(6,14,24,30)(7,15,17,31)(8,16,18,32), (1,29)(2,6)(3,15)(4,18)(5,25)(7,11)(8,22)(9,23)(10,30)(12,16)(13,19)(14,26)(17,27)(20,24)(21,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,19,10)(2,9,20,25)(3,32,21,16)(4,15,22,31)(5,30,23,14)(6,13,24,29)(7,28,17,12)(8,11,18,27)>;
G:=Group( (1,9,19,25)(2,10,20,26)(3,11,21,27)(4,12,22,28)(5,13,23,29)(6,14,24,30)(7,15,17,31)(8,16,18,32), (1,29)(2,6)(3,15)(4,18)(5,25)(7,11)(8,22)(9,23)(10,30)(12,16)(13,19)(14,26)(17,27)(20,24)(21,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,19,10)(2,9,20,25)(3,32,21,16)(4,15,22,31)(5,30,23,14)(6,13,24,29)(7,28,17,12)(8,11,18,27) );
G=PermutationGroup([[(1,9,19,25),(2,10,20,26),(3,11,21,27),(4,12,22,28),(5,13,23,29),(6,14,24,30),(7,15,17,31),(8,16,18,32)], [(1,29),(2,6),(3,15),(4,18),(5,25),(7,11),(8,22),(9,23),(10,30),(12,16),(13,19),(14,26),(17,27),(20,24),(21,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,26,19,10),(2,9,20,25),(3,32,21,16),(4,15,22,31),(5,30,23,14),(6,13,24,29),(7,28,17,12),(8,11,18,27)]])
Matrix representation of D4.D8 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
5 | 12 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 3 | 3 |
0 | 0 | 14 | 3 |
5 | 12 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 3 | 3 |
0 | 0 | 3 | 14 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,16,0,0,0,0,16],[5,5,0,0,12,5,0,0,0,0,3,14,0,0,3,3],[5,12,0,0,12,12,0,0,0,0,3,3,0,0,3,14] >;
D4.D8 in GAP, Magma, Sage, TeX
D_4.D_8
% in TeX
G:=Group("D4.D8");
// GroupNames label
G:=SmallGroup(128,371);
// by ID
G=gap.SmallGroup(128,371);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export