Extensions 1→N→G→Q→1 with N=C4 and Q=C2×SD16

Direct product G=N×Q with N=C4 and Q=C2×SD16
dρLabelID
C2×C4×SD1664C2xC4xSD16128,1669

Semidirect products G=N:Q with N=C4 and Q=C2×SD16
extensionφ:Q→Aut NdρLabelID
C41(C2×SD16) = C2×C85D4φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4:1(C2xSD16)128,1875
C42(C2×SD16) = D4×SD16φ: C2×SD16/SD16C2 ⊆ Aut C432C4:2(C2xSD16)128,2013
C43(C2×SD16) = C2×D4.D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4:3(C2xSD16)128,1762
C44(C2×SD16) = C2×C4⋊SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4:4(C2xSD16)128,1764

Non-split extensions G=N.Q with N=C4 and Q=C2×SD16
extensionφ:Q→Aut NdρLabelID
C4.1(C2×SD16) = C88SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.1(C2xSD16)128,437
C4.2(C2×SD16) = C85D8φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.2(C2xSD16)128,438
C4.3(C2×SD16) = C85Q16φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.3(C2xSD16)128,439
C4.4(C2×SD16) = C8212C2φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.4(C2xSD16)128,440
C4.5(C2×SD16) = C85SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.5(C2xSD16)128,446
C4.6(C2×SD16) = C86SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.6(C2xSD16)128,447
C4.7(C2×SD16) = C8.9SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.7(C2xSD16)128,448
C4.8(C2×SD16) = C2×C2.D16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.8(C2xSD16)128,868
C4.9(C2×SD16) = C2×C2.Q32φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.9(C2xSD16)128,869
C4.10(C2×SD16) = C23.24D8φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.10(C2xSD16)128,870
C4.11(C2×SD16) = C23.39D8φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.11(C2xSD16)128,871
C4.12(C2×SD16) = C23.40D8φ: C2×SD16/C2×C8C2 ⊆ Aut C432C4.12(C2xSD16)128,872
C4.13(C2×SD16) = C23.41D8φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.13(C2xSD16)128,873
C4.14(C2×SD16) = C4.4D16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.14(C2xSD16)128,972
C4.15(C2×SD16) = C4.SD32φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.15(C2xSD16)128,973
C4.16(C2×SD16) = C8.22SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.16(C2xSD16)128,974
C4.17(C2×SD16) = C8.12SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.17(C2xSD16)128,975
C4.18(C2×SD16) = C8.13SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.18(C2xSD16)128,976
C4.19(C2×SD16) = C8.14SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.19(C2xSD16)128,977
C4.20(C2×SD16) = C2×C4.4D8φ: C2×SD16/C2×C8C2 ⊆ Aut C464C4.20(C2xSD16)128,1860
C4.21(C2×SD16) = C2×C4.SD16φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.21(C2xSD16)128,1861
C4.22(C2×SD16) = C2×C83Q8φ: C2×SD16/C2×C8C2 ⊆ Aut C4128C4.22(C2xSD16)128,1889
C4.23(C2×SD16) = D4⋊SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.23(C2xSD16)128,354
C4.24(C2×SD16) = Q8⋊SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.24(C2xSD16)128,355
C4.25(C2×SD16) = Q86SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.25(C2xSD16)128,358
C4.26(C2×SD16) = Q83D8φ: C2×SD16/SD16C2 ⊆ Aut C464C4.26(C2xSD16)128,359
C4.27(C2×SD16) = D42SD16φ: C2×SD16/SD16C2 ⊆ Aut C432C4.27(C2xSD16)128,361
C4.28(C2×SD16) = Q82SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.28(C2xSD16)128,363
C4.29(C2×SD16) = D4.SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.29(C2xSD16)128,367
C4.30(C2×SD16) = D4.3Q16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.30(C2xSD16)128,369
C4.31(C2×SD16) = D4.D8φ: C2×SD16/SD16C2 ⊆ Aut C432C4.31(C2xSD16)128,371
C4.32(C2×SD16) = Q83SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.32(C2xSD16)128,374
C4.33(C2×SD16) = D4.5SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.33(C2xSD16)128,375
C4.34(C2×SD16) = Q83Q16φ: C2×SD16/SD16C2 ⊆ Aut C4128C4.34(C2xSD16)128,377
C4.35(C2×SD16) = Q84SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.35(C2xSD16)128,383
C4.36(C2×SD16) = Q8.SD16φ: C2×SD16/SD16C2 ⊆ Aut C4128C4.36(C2xSD16)128,385
C4.37(C2×SD16) = D44SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.37(C2xSD16)128,386
C4.38(C2×SD16) = C88D8φ: C2×SD16/SD16C2 ⊆ Aut C464C4.38(C2xSD16)128,397
C4.39(C2×SD16) = C88Q16φ: C2×SD16/SD16C2 ⊆ Aut C4128C4.39(C2xSD16)128,404
C4.40(C2×SD16) = D4.2SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.40(C2xSD16)128,409
C4.41(C2×SD16) = Q8.2SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.41(C2xSD16)128,410
C4.42(C2×SD16) = D4.3SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.42(C2xSD16)128,411
C4.43(C2×SD16) = Q8.3SD16φ: C2×SD16/SD16C2 ⊆ Aut C4128C4.43(C2xSD16)128,412
C4.44(C2×SD16) = D47SD16φ: C2×SD16/SD16C2 ⊆ Aut C432C4.44(C2xSD16)128,2027
C4.45(C2×SD16) = D48SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.45(C2xSD16)128,2030
C4.46(C2×SD16) = D49SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.46(C2xSD16)128,2067
C4.47(C2×SD16) = Q87SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.47(C2xSD16)128,2091
C4.48(C2×SD16) = Q88SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.48(C2xSD16)128,2094
C4.49(C2×SD16) = Q8×SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.49(C2xSD16)128,2111
C4.50(C2×SD16) = Q89SD16φ: C2×SD16/SD16C2 ⊆ Aut C464C4.50(C2xSD16)128,2124
C4.51(C2×SD16) = C2×C4.10D8φ: C2×SD16/C2×D4C2 ⊆ Aut C4128C4.51(C2xSD16)128,271
C4.52(C2×SD16) = C2×C4.6Q16φ: C2×SD16/C2×D4C2 ⊆ Aut C4128C4.52(C2xSD16)128,273
C4.53(C2×SD16) = C42.410D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.53(C2xSD16)128,274
C4.54(C2×SD16) = C42.415D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.54(C2xSD16)128,280
C4.55(C2×SD16) = C42.416D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.55(C2xSD16)128,281
C4.56(C2×SD16) = C42.79D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.56(C2xSD16)128,282
C4.57(C2×SD16) = C811SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.57(C2xSD16)128,403
C4.58(C2×SD16) = C810SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.58(C2xSD16)128,405
C4.59(C2×SD16) = D4.1Q16φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.59(C2xSD16)128,407
C4.60(C2×SD16) = C83SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.60(C2xSD16)128,423
C4.61(C2×SD16) = C84SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.61(C2xSD16)128,425
C4.62(C2×SD16) = C8.8SD16φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.62(C2xSD16)128,427
C4.63(C2×SD16) = C2×D82C4φ: C2×SD16/C2×D4C2 ⊆ Aut C432C4.63(C2xSD16)128,876
C4.64(C2×SD16) = C23.13D8φ: C2×SD16/C2×D4C2 ⊆ Aut C4324C4.64(C2xSD16)128,877
C4.65(C2×SD16) = C2×C8.Q8φ: C2×SD16/C2×D4C2 ⊆ Aut C432C4.65(C2xSD16)128,886
C4.66(C2×SD16) = M5(2)⋊3C4φ: C2×SD16/C2×D4C2 ⊆ Aut C4324C4.66(C2xSD16)128,887
C4.67(C2×SD16) = D83Q8φ: C2×SD16/C2×D4C2 ⊆ Aut C4164C4.67(C2xSD16)128,962
C4.68(C2×SD16) = D8.2Q8φ: C2×SD16/C2×D4C2 ⊆ Aut C4324C4.68(C2xSD16)128,963
C4.69(C2×SD16) = C2×D42Q8φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.69(C2xSD16)128,1803
C4.70(C2×SD16) = C42.222D4φ: C2×SD16/C2×D4C2 ⊆ Aut C432C4.70(C2xSD16)128,1833
C4.71(C2×SD16) = C42.264D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.71(C2xSD16)128,1938
C4.72(C2×SD16) = C42.279D4φ: C2×SD16/C2×D4C2 ⊆ Aut C464C4.72(C2xSD16)128,1959
C4.73(C2×SD16) = C2×C4.D8φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.73(C2xSD16)128,270
C4.74(C2×SD16) = C42.409D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.74(C2xSD16)128,272
C4.75(C2×SD16) = C42.413D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C432C4.75(C2xSD16)128,277
C4.76(C2×SD16) = C42.414D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.76(C2xSD16)128,278
C4.77(C2×SD16) = C42.78D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.77(C2xSD16)128,279
C4.78(C2×SD16) = C814SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.78(C2xSD16)128,398
C4.79(C2×SD16) = C813SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.79(C2xSD16)128,400
C4.80(C2×SD16) = Q81Q16φ: C2×SD16/C2×Q8C2 ⊆ Aut C4128C4.80(C2xSD16)128,402
C4.81(C2×SD16) = C8⋊SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.81(C2xSD16)128,418
C4.82(C2×SD16) = C82SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.82(C2xSD16)128,420
C4.83(C2×SD16) = C8.SD16φ: C2×SD16/C2×Q8C2 ⊆ Aut C4128C4.83(C2xSD16)128,422
C4.84(C2×SD16) = C2×Q8⋊Q8φ: C2×SD16/C2×Q8C2 ⊆ Aut C4128C4.84(C2xSD16)128,1805
C4.85(C2×SD16) = C42.223D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.85(C2xSD16)128,1835
C4.86(C2×SD16) = C42.266D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C432C4.86(C2xSD16)128,1940
C4.87(C2×SD16) = C42.281D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.87(C2xSD16)128,1961
C4.88(C2×SD16) = C42.294D4φ: C2×SD16/C2×Q8C2 ⊆ Aut C464C4.88(C2xSD16)128,1978
C4.89(C2×SD16) = C2×D4⋊C8central extension (φ=1)64C4.89(C2xSD16)128,206
C4.90(C2×SD16) = C2×Q8⋊C8central extension (φ=1)128C4.90(C2xSD16)128,207
C4.91(C2×SD16) = C42.45D4central extension (φ=1)64C4.91(C2xSD16)128,212
C4.92(C2×SD16) = C42.46D4central extension (φ=1)64C4.92(C2xSD16)128,213
C4.93(C2×SD16) = D4⋊M4(2)central extension (φ=1)32C4.93(C2xSD16)128,218
C4.94(C2×SD16) = Q8⋊M4(2)central extension (φ=1)64C4.94(C2xSD16)128,219
C4.95(C2×SD16) = C42.315D4central extension (φ=1)64C4.95(C2xSD16)128,224
C4.96(C2×SD16) = C42.316D4central extension (φ=1)64C4.96(C2xSD16)128,225
C4.97(C2×SD16) = C2×C82C8central extension (φ=1)128C4.97(C2xSD16)128,294
C4.98(C2×SD16) = C88M4(2)central extension (φ=1)64C4.98(C2xSD16)128,298
C4.99(C2×SD16) = C42.90D4central extension (φ=1)64C4.99(C2xSD16)128,302
C4.100(C2×SD16) = C8×SD16central extension (φ=1)64C4.100(C2xSD16)128,308
C4.101(C2×SD16) = C812SD16central extension (φ=1)64C4.101(C2xSD16)128,314
C4.102(C2×SD16) = C815SD16central extension (φ=1)64C4.102(C2xSD16)128,315
C4.103(C2×SD16) = C89SD16central extension (φ=1)64C4.103(C2xSD16)128,322
C4.104(C2×SD16) = C42.365D4central extension (φ=1)64C4.104(C2xSD16)128,1899

׿
×
𝔽