p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊2D8, C42.180C23, D42⋊1C2, D4⋊C8⋊7C2, C4⋊D8⋊1C2, C8⋊4D4⋊1C2, C4⋊C8⋊1C22, (C4×C8)⋊6C22, C4⋊C4.46D4, C4.24(C2×D8), C4.D8⋊2C2, (C2×D4).248D4, C4⋊1D4⋊1C22, C4.54(C8⋊C22), (C4×D4).17C22, C2.10(C22⋊D8), C2.12(D4⋊4D4), C22.146C22≀C2, (C2×C4).937(C2×D4), 2-Sylow(PSO+(4,7)), SmallGroup(128,351)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊D8
G = < a,b,c,d | a4=b2=c8=d2=1, bab=cac-1=dad=a-1, cbc-1=dbd=ab, dcd=c-1 >
Subgroups: 536 in 168 conjugacy classes, 38 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, C4×C8, D4⋊C4, C4⋊C8, C4×D4, C22≀C2, C4⋊D4, C4⋊1D4, C2×D8, C22×D4, D4⋊C8, C4.D8, C4⋊D8, C8⋊4D4, D42, D4⋊D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, D4⋊4D4, D4⋊D8
Character table of D4⋊D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | √2 | -√2 | orthogonal lifted from D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | -√2 | √2 | orthogonal lifted from D8 |
ρ22 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | √2 | -√2 | orthogonal lifted from D8 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ26 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
(1 10 29 17)(2 18 30 11)(3 12 31 19)(4 20 32 13)(5 14 25 21)(6 22 26 15)(7 16 27 23)(8 24 28 9)
(1 5)(2 22)(3 7)(4 24)(6 18)(8 20)(9 32)(10 21)(11 26)(12 23)(13 28)(14 17)(15 30)(16 19)(25 29)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 21)(10 20)(11 19)(12 18)(13 17)(14 24)(15 23)(16 22)
G:=sub<Sym(32)| (1,10,29,17)(2,18,30,11)(3,12,31,19)(4,20,32,13)(5,14,25,21)(6,22,26,15)(7,16,27,23)(8,24,28,9), (1,5)(2,22)(3,7)(4,24)(6,18)(8,20)(9,32)(10,21)(11,26)(12,23)(13,28)(14,17)(15,30)(16,19)(25,29)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,21)(10,20)(11,19)(12,18)(13,17)(14,24)(15,23)(16,22)>;
G:=Group( (1,10,29,17)(2,18,30,11)(3,12,31,19)(4,20,32,13)(5,14,25,21)(6,22,26,15)(7,16,27,23)(8,24,28,9), (1,5)(2,22)(3,7)(4,24)(6,18)(8,20)(9,32)(10,21)(11,26)(12,23)(13,28)(14,17)(15,30)(16,19)(25,29)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,21)(10,20)(11,19)(12,18)(13,17)(14,24)(15,23)(16,22) );
G=PermutationGroup([[(1,10,29,17),(2,18,30,11),(3,12,31,19),(4,20,32,13),(5,14,25,21),(6,22,26,15),(7,16,27,23),(8,24,28,9)], [(1,5),(2,22),(3,7),(4,24),(6,18),(8,20),(9,32),(10,21),(11,26),(12,23),(13,28),(14,17),(15,30),(16,19),(25,29),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,21),(10,20),(11,19),(12,18),(13,17),(14,24),(15,23),(16,22)]])
Matrix representation of D4⋊D8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 15 |
0 | 0 | 1 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 16 | 16 |
14 | 14 | 0 | 0 |
3 | 14 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 3 | 0 |
3 | 14 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 14 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,16,1,0,0,15,1],[16,0,0,0,0,16,0,0,0,0,1,16,0,0,0,16],[14,3,0,0,14,14,0,0,0,0,0,3,0,0,6,0],[3,14,0,0,14,14,0,0,0,0,0,14,0,0,11,0] >;
D4⋊D8 in GAP, Magma, Sage, TeX
D_4\rtimes D_8
% in TeX
G:=Group("D4:D8");
// GroupNames label
G:=SmallGroup(128,351);
// by ID
G=gap.SmallGroup(128,351);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a*b,d*c*d=c^-1>;
// generators/relations
Export