p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8⋊4D4, C4⋊1D8, C42.80C22, (C4×C8)⋊8C2, (C2×D8)⋊5C2, C4.2(C2×D4), C4⋊1D4⋊3C2, C2.10(C2×D8), (C2×C4).77D4, C2.6(C4⋊1D4), (C2×C8).78C22, (C2×C4).118C23, (C2×D4).29C22, C22.114(C2×D4), SmallGroup(64,174)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8⋊4D4
G = < a,b,c | a8=b4=c2=1, ab=ba, cac=a-1, cbc=b-1 >
Subgroups: 193 in 81 conjugacy classes, 33 normal (7 characteristic)
C1, C2, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, C23, C42, C2×C8, D8, C2×D4, C2×D4, C4×C8, C4⋊1D4, C2×D8, C8⋊4D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4⋊1D4, C2×D8, C8⋊4D4
Character table of C8⋊4D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16 27 18)(2 9 28 19)(3 10 29 20)(4 11 30 21)(5 12 31 22)(6 13 32 23)(7 14 25 24)(8 15 26 17)
(1 27)(2 26)(3 25)(4 32)(5 31)(6 30)(7 29)(8 28)(9 15)(10 14)(11 13)(17 19)(20 24)(21 23)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,27,18)(2,9,28,19)(3,10,29,20)(4,11,30,21)(5,12,31,22)(6,13,32,23)(7,14,25,24)(8,15,26,17), (1,27)(2,26)(3,25)(4,32)(5,31)(6,30)(7,29)(8,28)(9,15)(10,14)(11,13)(17,19)(20,24)(21,23)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,27,18)(2,9,28,19)(3,10,29,20)(4,11,30,21)(5,12,31,22)(6,13,32,23)(7,14,25,24)(8,15,26,17), (1,27)(2,26)(3,25)(4,32)(5,31)(6,30)(7,29)(8,28)(9,15)(10,14)(11,13)(17,19)(20,24)(21,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16,27,18),(2,9,28,19),(3,10,29,20),(4,11,30,21),(5,12,31,22),(6,13,32,23),(7,14,25,24),(8,15,26,17)], [(1,27),(2,26),(3,25),(4,32),(5,31),(6,30),(7,29),(8,28),(9,15),(10,14),(11,13),(17,19),(20,24),(21,23)]])
C8⋊4D4 is a maximal subgroup of
C8.24D8 C4.D16 C4⋊1D4⋊C4 D4⋊D8 C42.181C23 Q8⋊D8 C8⋊13SD16 C8⋊2SD16 C82⋊5C2 D8⋊2D4 Q16⋊2D4 D8⋊3D4 C4.4D16 C8.13SD16 C42.263D4 D8○D8 Q8⋊5D8 C42.530C23
C8p⋊D4: C4⋊D16 C16⋊5D4 C16⋊3D4 C12⋊4D8 C24⋊5D4 C20⋊4D8 C40⋊5D4 C28⋊4D8 ...
C4p⋊D8: C8⋊7D8 C8⋊2D8 C8⋊5D8 C8⋊4D8 C8⋊3D8 C12⋊D8 C20⋊D8 C28⋊D8 ...
C8⋊pD4⋊C2: C8⋊6SD16 C42.664C23 C42.360D4 M4(2)⋊7D4 M4(2)⋊11D4 C42.366D4 C42.388C23 C42.261D4 ...
C8⋊4D4 is a maximal quotient of
C82⋊5C2 C8⋊4Q16 C8.2D8 C42.59Q8 C42.432D4 (C2×C4)⋊6D8 (C2×C4)⋊2D8 (C2×C4).27D8 C4⋊Q32 C8.21D8 C8.7D8
C8p⋊D4: C4⋊D16 C16⋊5D4 C16⋊3D4 C12⋊4D8 C24⋊5D4 C20⋊4D8 C40⋊5D4 C28⋊4D8 ...
C4p⋊D8: C8⋊5D8 C8⋊4D8 C8⋊3D8 C12⋊D8 C20⋊D8 C28⋊D8 ...
Matrix representation of C8⋊4D4 ►in GL4(𝔽17) generated by
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 3 | 14 |
0 | 0 | 3 | 3 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [3,3,0,0,14,3,0,0,0,0,3,3,0,0,14,3],[16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,1] >;
C8⋊4D4 in GAP, Magma, Sage, TeX
C_8\rtimes_4D_4
% in TeX
G:=Group("C8:4D4");
// GroupNames label
G:=SmallGroup(64,174);
// by ID
G=gap.SmallGroup(64,174);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,247,362,86,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export