p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊4Q16, C42.209C23, C4⋊C4.31D4, Q8⋊C8.6C2, (C2×Q8).51D4, C8⋊2Q8.3C2, C4.21(C2×Q16), C4.83(C4○D8), C4⋊C8.14C22, (C4×C8).46C22, Q8⋊Q8.4C2, Q8⋊3Q8.2C2, C4⋊2Q16.2C2, C4⋊Q8.29C22, C4.66(C8⋊C22), C4.10D8.5C2, (C4×Q8).37C22, C2.23(D4⋊D4), C4.39(C8.C22), C22.175C22≀C2, C2.16(C22⋊Q16), C2.13(D4.10D4), (C2×C4).966(C2×D4), SmallGroup(128,380)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊4Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=cac-1=a-1, ad=da, cbc-1=ab, dbd-1=a2b, dcd-1=c-1 >
Subgroups: 192 in 97 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4×Q8, C42.C2, C4⋊Q8, C4⋊Q8, C2×Q16, Q8⋊C8, C4.10D8, C4⋊2Q16, Q8⋊Q8, C8⋊2Q8, Q8⋊3Q8, Q8⋊4Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C22≀C2, C2×Q16, C4○D8, C8⋊C22, C8.C22, D4⋊D4, C22⋊Q16, D4.10D4, Q8⋊4Q16
Character table of Q8⋊4Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | 0 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 4 | 4 | -4 | -4 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ26 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 111 41 29)(2 30 42 112)(3 105 43 31)(4 32 44 106)(5 107 45 25)(6 26 46 108)(7 109 47 27)(8 28 48 110)(9 93 127 80)(10 73 128 94)(11 95 121 74)(12 75 122 96)(13 89 123 76)(14 77 124 90)(15 91 125 78)(16 79 126 92)(17 63 99 49)(18 50 100 64)(19 57 101 51)(20 52 102 58)(21 59 103 53)(22 54 104 60)(23 61 97 55)(24 56 98 62)(33 113 84 66)(34 67 85 114)(35 115 86 68)(36 69 87 116)(37 117 88 70)(38 71 81 118)(39 119 82 72)(40 65 83 120)
(1 39 41 82)(2 65 42 120)(3 33 43 84)(4 67 44 114)(5 35 45 86)(6 69 46 116)(7 37 47 88)(8 71 48 118)(9 99 127 17)(10 64 128 50)(11 101 121 19)(12 58 122 52)(13 103 123 21)(14 60 124 54)(15 97 125 23)(16 62 126 56)(18 73 100 94)(20 75 102 96)(22 77 104 90)(24 79 98 92)(25 115 107 68)(26 36 108 87)(27 117 109 70)(28 38 110 81)(29 119 111 72)(30 40 112 83)(31 113 105 66)(32 34 106 85)(49 93 63 80)(51 95 57 74)(53 89 59 76)(55 91 61 78)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 99 5 103)(2 98 6 102)(3 97 7 101)(4 104 8 100)(9 35 13 39)(10 34 14 38)(11 33 15 37)(12 40 16 36)(17 45 21 41)(18 44 22 48)(19 43 23 47)(20 42 24 46)(25 59 29 63)(26 58 30 62)(27 57 31 61)(28 64 32 60)(49 107 53 111)(50 106 54 110)(51 105 55 109)(52 112 56 108)(65 79 69 75)(66 78 70 74)(67 77 71 73)(68 76 72 80)(81 128 85 124)(82 127 86 123)(83 126 87 122)(84 125 88 121)(89 119 93 115)(90 118 94 114)(91 117 95 113)(92 116 96 120)
G:=sub<Sym(128)| (1,111,41,29)(2,30,42,112)(3,105,43,31)(4,32,44,106)(5,107,45,25)(6,26,46,108)(7,109,47,27)(8,28,48,110)(9,93,127,80)(10,73,128,94)(11,95,121,74)(12,75,122,96)(13,89,123,76)(14,77,124,90)(15,91,125,78)(16,79,126,92)(17,63,99,49)(18,50,100,64)(19,57,101,51)(20,52,102,58)(21,59,103,53)(22,54,104,60)(23,61,97,55)(24,56,98,62)(33,113,84,66)(34,67,85,114)(35,115,86,68)(36,69,87,116)(37,117,88,70)(38,71,81,118)(39,119,82,72)(40,65,83,120), (1,39,41,82)(2,65,42,120)(3,33,43,84)(4,67,44,114)(5,35,45,86)(6,69,46,116)(7,37,47,88)(8,71,48,118)(9,99,127,17)(10,64,128,50)(11,101,121,19)(12,58,122,52)(13,103,123,21)(14,60,124,54)(15,97,125,23)(16,62,126,56)(18,73,100,94)(20,75,102,96)(22,77,104,90)(24,79,98,92)(25,115,107,68)(26,36,108,87)(27,117,109,70)(28,38,110,81)(29,119,111,72)(30,40,112,83)(31,113,105,66)(32,34,106,85)(49,93,63,80)(51,95,57,74)(53,89,59,76)(55,91,61,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,99,5,103)(2,98,6,102)(3,97,7,101)(4,104,8,100)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(17,45,21,41)(18,44,22,48)(19,43,23,47)(20,42,24,46)(25,59,29,63)(26,58,30,62)(27,57,31,61)(28,64,32,60)(49,107,53,111)(50,106,54,110)(51,105,55,109)(52,112,56,108)(65,79,69,75)(66,78,70,74)(67,77,71,73)(68,76,72,80)(81,128,85,124)(82,127,86,123)(83,126,87,122)(84,125,88,121)(89,119,93,115)(90,118,94,114)(91,117,95,113)(92,116,96,120)>;
G:=Group( (1,111,41,29)(2,30,42,112)(3,105,43,31)(4,32,44,106)(5,107,45,25)(6,26,46,108)(7,109,47,27)(8,28,48,110)(9,93,127,80)(10,73,128,94)(11,95,121,74)(12,75,122,96)(13,89,123,76)(14,77,124,90)(15,91,125,78)(16,79,126,92)(17,63,99,49)(18,50,100,64)(19,57,101,51)(20,52,102,58)(21,59,103,53)(22,54,104,60)(23,61,97,55)(24,56,98,62)(33,113,84,66)(34,67,85,114)(35,115,86,68)(36,69,87,116)(37,117,88,70)(38,71,81,118)(39,119,82,72)(40,65,83,120), (1,39,41,82)(2,65,42,120)(3,33,43,84)(4,67,44,114)(5,35,45,86)(6,69,46,116)(7,37,47,88)(8,71,48,118)(9,99,127,17)(10,64,128,50)(11,101,121,19)(12,58,122,52)(13,103,123,21)(14,60,124,54)(15,97,125,23)(16,62,126,56)(18,73,100,94)(20,75,102,96)(22,77,104,90)(24,79,98,92)(25,115,107,68)(26,36,108,87)(27,117,109,70)(28,38,110,81)(29,119,111,72)(30,40,112,83)(31,113,105,66)(32,34,106,85)(49,93,63,80)(51,95,57,74)(53,89,59,76)(55,91,61,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,99,5,103)(2,98,6,102)(3,97,7,101)(4,104,8,100)(9,35,13,39)(10,34,14,38)(11,33,15,37)(12,40,16,36)(17,45,21,41)(18,44,22,48)(19,43,23,47)(20,42,24,46)(25,59,29,63)(26,58,30,62)(27,57,31,61)(28,64,32,60)(49,107,53,111)(50,106,54,110)(51,105,55,109)(52,112,56,108)(65,79,69,75)(66,78,70,74)(67,77,71,73)(68,76,72,80)(81,128,85,124)(82,127,86,123)(83,126,87,122)(84,125,88,121)(89,119,93,115)(90,118,94,114)(91,117,95,113)(92,116,96,120) );
G=PermutationGroup([[(1,111,41,29),(2,30,42,112),(3,105,43,31),(4,32,44,106),(5,107,45,25),(6,26,46,108),(7,109,47,27),(8,28,48,110),(9,93,127,80),(10,73,128,94),(11,95,121,74),(12,75,122,96),(13,89,123,76),(14,77,124,90),(15,91,125,78),(16,79,126,92),(17,63,99,49),(18,50,100,64),(19,57,101,51),(20,52,102,58),(21,59,103,53),(22,54,104,60),(23,61,97,55),(24,56,98,62),(33,113,84,66),(34,67,85,114),(35,115,86,68),(36,69,87,116),(37,117,88,70),(38,71,81,118),(39,119,82,72),(40,65,83,120)], [(1,39,41,82),(2,65,42,120),(3,33,43,84),(4,67,44,114),(5,35,45,86),(6,69,46,116),(7,37,47,88),(8,71,48,118),(9,99,127,17),(10,64,128,50),(11,101,121,19),(12,58,122,52),(13,103,123,21),(14,60,124,54),(15,97,125,23),(16,62,126,56),(18,73,100,94),(20,75,102,96),(22,77,104,90),(24,79,98,92),(25,115,107,68),(26,36,108,87),(27,117,109,70),(28,38,110,81),(29,119,111,72),(30,40,112,83),(31,113,105,66),(32,34,106,85),(49,93,63,80),(51,95,57,74),(53,89,59,76),(55,91,61,78)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,99,5,103),(2,98,6,102),(3,97,7,101),(4,104,8,100),(9,35,13,39),(10,34,14,38),(11,33,15,37),(12,40,16,36),(17,45,21,41),(18,44,22,48),(19,43,23,47),(20,42,24,46),(25,59,29,63),(26,58,30,62),(27,57,31,61),(28,64,32,60),(49,107,53,111),(50,106,54,110),(51,105,55,109),(52,112,56,108),(65,79,69,75),(66,78,70,74),(67,77,71,73),(68,76,72,80),(81,128,85,124),(82,127,86,123),(83,126,87,122),(84,125,88,121),(89,119,93,115),(90,118,94,114),(91,117,95,113),(92,116,96,120)]])
Matrix representation of Q8⋊4Q16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 13 | 2 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 9 |
0 | 0 | 13 | 1 |
2 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 9 | 10 |
0 | 0 | 2 | 8 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 8 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,0,0,0,2,4],[1,0,0,0,0,1,0,0,0,0,16,13,0,0,9,1],[2,0,0,0,0,9,0,0,0,0,9,2,0,0,10,8],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,8,16] >;
Q8⋊4Q16 in GAP, Magma, Sage, TeX
Q_8\rtimes_4Q_{16}
% in TeX
G:=Group("Q8:4Q16");
// GroupNames label
G:=SmallGroup(128,380);
// by ID
G=gap.SmallGroup(128,380);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,456,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations
Export