p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊4Q16, Q8.7D8, C42.210C23, Q8⋊C8⋊13C2, D4⋊C8.7C2, C4⋊C4.32D4, C8⋊2Q8⋊2C2, C4.31(C2×D8), (D4×Q8).2C2, C4⋊2Q16⋊4C2, C4.22(C2×Q16), (C2×D4).257D4, C4.10D8⋊2C2, C4⋊C8.15C22, (C4×C8).47C22, (C2×Q8).202D4, D4⋊Q8.2C2, C4⋊Q8.30C22, C4.67(C8⋊C22), (C4×D4).38C22, (C4×Q8).38C22, C2.17(C22⋊D8), C4.40(C8.C22), C22.176C22≀C2, C2.17(C22⋊Q16), C2.14(D4.10D4), (C2×C4).967(C2×D4), SmallGroup(128,381)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊4Q16
G = < a,b,c,d | a4=b2=c8=1, d2=c4, bab=cac-1=a-1, ad=da, cbc-1=ab, bd=db, dcd-1=c-1 >
Subgroups: 264 in 117 conjugacy classes, 38 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C4⋊Q8, C4⋊Q8, C2×Q16, C22×Q8, D4⋊C8, Q8⋊C8, C4.10D8, C4⋊2Q16, D4⋊Q8, C8⋊2Q8, D4×Q8, D4⋊4Q16
Quotients: C1, C2, C22, D4, C23, D8, Q16, C2×D4, C22≀C2, C2×D8, C2×Q16, C8⋊C22, C8.C22, C22⋊D8, C22⋊Q16, D4.10D4, D4⋊4Q16
Character table of D4⋊4Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
(1 50 63 22)(2 23 64 51)(3 52 57 24)(4 17 58 53)(5 54 59 18)(6 19 60 55)(7 56 61 20)(8 21 62 49)(9 47 27 37)(10 38 28 48)(11 41 29 39)(12 40 30 42)(13 43 31 33)(14 34 32 44)(15 45 25 35)(16 36 26 46)
(1 18)(2 60)(3 20)(4 62)(5 22)(6 64)(7 24)(8 58)(9 43)(10 14)(11 45)(12 16)(13 47)(15 41)(17 21)(19 23)(25 39)(26 30)(27 33)(28 32)(29 35)(31 37)(34 48)(36 42)(38 44)(40 46)(49 53)(50 59)(51 55)(52 61)(54 63)(56 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 33 5 37)(2 40 6 36)(3 39 7 35)(4 38 8 34)(9 50 13 54)(10 49 14 53)(11 56 15 52)(12 55 16 51)(17 28 21 32)(18 27 22 31)(19 26 23 30)(20 25 24 29)(41 61 45 57)(42 60 46 64)(43 59 47 63)(44 58 48 62)
G:=sub<Sym(64)| (1,50,63,22)(2,23,64,51)(3,52,57,24)(4,17,58,53)(5,54,59,18)(6,19,60,55)(7,56,61,20)(8,21,62,49)(9,47,27,37)(10,38,28,48)(11,41,29,39)(12,40,30,42)(13,43,31,33)(14,34,32,44)(15,45,25,35)(16,36,26,46), (1,18)(2,60)(3,20)(4,62)(5,22)(6,64)(7,24)(8,58)(9,43)(10,14)(11,45)(12,16)(13,47)(15,41)(17,21)(19,23)(25,39)(26,30)(27,33)(28,32)(29,35)(31,37)(34,48)(36,42)(38,44)(40,46)(49,53)(50,59)(51,55)(52,61)(54,63)(56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,33,5,37)(2,40,6,36)(3,39,7,35)(4,38,8,34)(9,50,13,54)(10,49,14,53)(11,56,15,52)(12,55,16,51)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(41,61,45,57)(42,60,46,64)(43,59,47,63)(44,58,48,62)>;
G:=Group( (1,50,63,22)(2,23,64,51)(3,52,57,24)(4,17,58,53)(5,54,59,18)(6,19,60,55)(7,56,61,20)(8,21,62,49)(9,47,27,37)(10,38,28,48)(11,41,29,39)(12,40,30,42)(13,43,31,33)(14,34,32,44)(15,45,25,35)(16,36,26,46), (1,18)(2,60)(3,20)(4,62)(5,22)(6,64)(7,24)(8,58)(9,43)(10,14)(11,45)(12,16)(13,47)(15,41)(17,21)(19,23)(25,39)(26,30)(27,33)(28,32)(29,35)(31,37)(34,48)(36,42)(38,44)(40,46)(49,53)(50,59)(51,55)(52,61)(54,63)(56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,33,5,37)(2,40,6,36)(3,39,7,35)(4,38,8,34)(9,50,13,54)(10,49,14,53)(11,56,15,52)(12,55,16,51)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(41,61,45,57)(42,60,46,64)(43,59,47,63)(44,58,48,62) );
G=PermutationGroup([[(1,50,63,22),(2,23,64,51),(3,52,57,24),(4,17,58,53),(5,54,59,18),(6,19,60,55),(7,56,61,20),(8,21,62,49),(9,47,27,37),(10,38,28,48),(11,41,29,39),(12,40,30,42),(13,43,31,33),(14,34,32,44),(15,45,25,35),(16,36,26,46)], [(1,18),(2,60),(3,20),(4,62),(5,22),(6,64),(7,24),(8,58),(9,43),(10,14),(11,45),(12,16),(13,47),(15,41),(17,21),(19,23),(25,39),(26,30),(27,33),(28,32),(29,35),(31,37),(34,48),(36,42),(38,44),(40,46),(49,53),(50,59),(51,55),(52,61),(54,63),(56,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,33,5,37),(2,40,6,36),(3,39,7,35),(4,38,8,34),(9,50,13,54),(10,49,14,53),(11,56,15,52),(12,55,16,51),(17,28,21,32),(18,27,22,31),(19,26,23,30),(20,25,24,29),(41,61,45,57),(42,60,46,64),(43,59,47,63),(44,58,48,62)]])
Matrix representation of D4⋊4Q16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 16 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 3 | 0 |
7 | 16 | 0 | 0 |
16 | 10 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,1,16,0,0,2,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,2,16],[3,3,0,0,14,3,0,0,0,0,0,3,0,0,6,0],[7,16,0,0,16,10,0,0,0,0,16,0,0,0,0,16] >;
D4⋊4Q16 in GAP, Magma, Sage, TeX
D_4\rtimes_4Q_{16}
% in TeX
G:=Group("D4:4Q16");
// GroupNames label
G:=SmallGroup(128,381);
// by ID
G=gap.SmallGroup(128,381);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,456,422,352,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=c^4,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export