p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4⋊2Q16, Q8.1D4, C42.19C22, C4⋊C8.6C2, C4⋊Q8.4C2, (C2×C4).27D4, C4.32(C2×D4), (C4×Q8).5C2, C2.5(C2×Q16), (C2×C8).4C22, (C2×Q16).2C2, C4.42(C4○D4), C4⋊C4.59C22, (C2×C4).90C23, Q8⋊C4.2C2, C22.86(C2×D4), (C2×Q8).8C22, C2.14(C4⋊D4), C2.10(C8.C22), SmallGroup(64,143)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊2Q16
G = < a,b,c | a4=b8=1, c2=b4, bab-1=a-1, ac=ca, cbc-1=b-1 >
Character table of C4⋊2Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 42 19 35)(2 36 20 43)(3 44 21 37)(4 38 22 45)(5 46 23 39)(6 40 24 47)(7 48 17 33)(8 34 18 41)(9 63 51 30)(10 31 52 64)(11 57 53 32)(12 25 54 58)(13 59 55 26)(14 27 56 60)(15 61 49 28)(16 29 50 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 13 5 9)(2 12 6 16)(3 11 7 15)(4 10 8 14)(17 49 21 53)(18 56 22 52)(19 55 23 51)(20 54 24 50)(25 40 29 36)(26 39 30 35)(27 38 31 34)(28 37 32 33)(41 60 45 64)(42 59 46 63)(43 58 47 62)(44 57 48 61)
G:=sub<Sym(64)| (1,42,19,35)(2,36,20,43)(3,44,21,37)(4,38,22,45)(5,46,23,39)(6,40,24,47)(7,48,17,33)(8,34,18,41)(9,63,51,30)(10,31,52,64)(11,57,53,32)(12,25,54,58)(13,59,55,26)(14,27,56,60)(15,61,49,28)(16,29,50,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,13,5,9)(2,12,6,16)(3,11,7,15)(4,10,8,14)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,60,45,64)(42,59,46,63)(43,58,47,62)(44,57,48,61)>;
G:=Group( (1,42,19,35)(2,36,20,43)(3,44,21,37)(4,38,22,45)(5,46,23,39)(6,40,24,47)(7,48,17,33)(8,34,18,41)(9,63,51,30)(10,31,52,64)(11,57,53,32)(12,25,54,58)(13,59,55,26)(14,27,56,60)(15,61,49,28)(16,29,50,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,13,5,9)(2,12,6,16)(3,11,7,15)(4,10,8,14)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,60,45,64)(42,59,46,63)(43,58,47,62)(44,57,48,61) );
G=PermutationGroup([[(1,42,19,35),(2,36,20,43),(3,44,21,37),(4,38,22,45),(5,46,23,39),(6,40,24,47),(7,48,17,33),(8,34,18,41),(9,63,51,30),(10,31,52,64),(11,57,53,32),(12,25,54,58),(13,59,55,26),(14,27,56,60),(15,61,49,28),(16,29,50,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,13,5,9),(2,12,6,16),(3,11,7,15),(4,10,8,14),(17,49,21,53),(18,56,22,52),(19,55,23,51),(20,54,24,50),(25,40,29,36),(26,39,30,35),(27,38,31,34),(28,37,32,33),(41,60,45,64),(42,59,46,63),(43,58,47,62),(44,57,48,61)]])
C4⋊2Q16 is a maximal subgroup of
C42.443D4 C42.212D4 C42.445D4 C42.224D4 C42.451D4 C42.231D4 C42.234D4 C42.267D4 C42.270D4 C42.274D4 C42.276D4 C42.296D4 C42.297D4 C42.300D4 C42.303D4 Q8.D12
C4p⋊Q16: C8⋊8Q16 C8⋊7Q16 C8⋊Q16 C8⋊2Q16 C4⋊Dic12 C12⋊7Q16 C12⋊Q16 C4⋊Dic20 ...
(Cp×Q8).D4: C42.201C23 Q8.D8 D4⋊3Q16 Q8⋊3Q16 Q8⋊4Q16 D4⋊4Q16 C42.213C23 Q8.SD16 ...
C4⋊C4.D2p: C42.19C23 C42.354C23 C42.361C23 C42.409C23 C42.411C23 C42.25C23 C42.28C23 SD16⋊8D4 ...
C4⋊2Q16 is a maximal quotient of
C2.(C4×Q16) C42.29Q8 C42.117D4 (C2×C8).1Q8
C4p⋊Q16: C8⋊8Q16 C8⋊7Q16 C8⋊Q16 C8⋊2Q16 C4⋊Dic12 C12⋊7Q16 C12⋊Q16 C4⋊Dic20 ...
(Cp×Q8).D4: Q8.1Q16 C8.3Q16 C42.99D4 (C2×C4)⋊9Q16 (C2×C4)⋊2Q16 C4⋊C4.95D4 (C2×C4)⋊3Q16 (C2×C4).19Q16 ...
(C2×C8).D2p: (C2×C8).52D4 Dic3⋊Q16 Dic5⋊Q16 Dic7⋊Q16 ...
Matrix representation of C4⋊2Q16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 9 |
0 | 0 | 13 | 16 |
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 16 | 4 |
4 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 4 | 2 |
0 | 0 | 1 | 13 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,13,0,0,9,16],[3,3,0,0,14,3,0,0,0,0,13,16,0,0,0,4],[4,0,0,0,0,13,0,0,0,0,4,1,0,0,2,13] >;
C4⋊2Q16 in GAP, Magma, Sage, TeX
C_4\rtimes_2Q_{16}
% in TeX
G:=Group("C4:2Q16");
// GroupNames label
G:=SmallGroup(64,143);
// by ID
G=gap.SmallGroup(64,143);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,55,362,158,1444,376,88]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C4⋊2Q16 in TeX
Character table of C4⋊2Q16 in TeX