p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8⋊4SD16, D4.6SD16, C42.212C23, Q8⋊C8⋊27C2, C4⋊C4.34D4, (D4×Q8).3C2, D4⋊C8.11C2, C8⋊3Q8⋊12C2, Q8⋊Q8⋊34C2, (C2×D4).258D4, (C2×Q8).203D4, C4.35(C2×SD16), C4⋊Q8.32C22, C4.10D8⋊21C2, C4⋊C8.171C22, C4.39(C8⋊C22), (C4×C8).245C22, D4.D4.5C2, (C4×D4).40C22, (C4×Q8).40C22, C2.16(Q8⋊D4), C4.67(C8.C22), C22.178C22≀C2, C2.16(C22⋊SD16), C2.16(D4.10D4), (C2×C4).969(C2×D4), SmallGroup(128,383)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8⋊4SD16
G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=cac-1=a-1, ad=da, cbc-1=a-1b, bd=db, dcd=c3 >
Subgroups: 264 in 117 conjugacy classes, 38 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4×C8, Q8⋊C4, C4⋊C8, C4.Q8, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C4⋊Q8, C4⋊Q8, C2×SD16, C22×Q8, D4⋊C8, Q8⋊C8, C4.10D8, D4.D4, Q8⋊Q8, C8⋊3Q8, D4×Q8, Q8⋊4SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C22≀C2, C2×SD16, C8⋊C22, C8.C22, Q8⋊D4, C22⋊SD16, D4.10D4, Q8⋊4SD16
Character table of Q8⋊4SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | 0 | -√-2 | 0 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | -√-2 | 0 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | 0 | √-2 | 0 | complex lifted from SD16 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | √-2 | 0 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | 0 | √-2 | 0 | complex lifted from SD16 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | √-2 | 0 | -√-2 | 0 | complex lifted from SD16 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
(1 29 55 22)(2 23 56 30)(3 31 49 24)(4 17 50 32)(5 25 51 18)(6 19 52 26)(7 27 53 20)(8 21 54 28)(9 44 37 62)(10 63 38 45)(11 46 39 64)(12 57 40 47)(13 48 33 58)(14 59 34 41)(15 42 35 60)(16 61 36 43)
(1 63 55 45)(2 39 56 11)(3 57 49 47)(4 33 50 13)(5 59 51 41)(6 35 52 15)(7 61 53 43)(8 37 54 9)(10 22 38 29)(12 24 40 31)(14 18 34 25)(16 20 36 27)(17 48 32 58)(19 42 26 60)(21 44 28 62)(23 46 30 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 39)(35 37)(36 40)(42 44)(43 47)(46 48)(49 53)(50 56)(52 54)(57 61)(58 64)(60 62)
G:=sub<Sym(64)| (1,29,55,22)(2,23,56,30)(3,31,49,24)(4,17,50,32)(5,25,51,18)(6,19,52,26)(7,27,53,20)(8,21,54,28)(9,44,37,62)(10,63,38,45)(11,46,39,64)(12,57,40,47)(13,48,33,58)(14,59,34,41)(15,42,35,60)(16,61,36,43), (1,63,55,45)(2,39,56,11)(3,57,49,47)(4,33,50,13)(5,59,51,41)(6,35,52,15)(7,61,53,43)(8,37,54,9)(10,22,38,29)(12,24,40,31)(14,18,34,25)(16,20,36,27)(17,48,32,58)(19,42,26,60)(21,44,28,62)(23,46,30,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,39)(35,37)(36,40)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,61)(58,64)(60,62)>;
G:=Group( (1,29,55,22)(2,23,56,30)(3,31,49,24)(4,17,50,32)(5,25,51,18)(6,19,52,26)(7,27,53,20)(8,21,54,28)(9,44,37,62)(10,63,38,45)(11,46,39,64)(12,57,40,47)(13,48,33,58)(14,59,34,41)(15,42,35,60)(16,61,36,43), (1,63,55,45)(2,39,56,11)(3,57,49,47)(4,33,50,13)(5,59,51,41)(6,35,52,15)(7,61,53,43)(8,37,54,9)(10,22,38,29)(12,24,40,31)(14,18,34,25)(16,20,36,27)(17,48,32,58)(19,42,26,60)(21,44,28,62)(23,46,30,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,39)(35,37)(36,40)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,61)(58,64)(60,62) );
G=PermutationGroup([[(1,29,55,22),(2,23,56,30),(3,31,49,24),(4,17,50,32),(5,25,51,18),(6,19,52,26),(7,27,53,20),(8,21,54,28),(9,44,37,62),(10,63,38,45),(11,46,39,64),(12,57,40,47),(13,48,33,58),(14,59,34,41),(15,42,35,60),(16,61,36,43)], [(1,63,55,45),(2,39,56,11),(3,57,49,47),(4,33,50,13),(5,59,51,41),(6,35,52,15),(7,61,53,43),(8,37,54,9),(10,22,38,29),(12,24,40,31),(14,18,34,25),(16,20,36,27),(17,48,32,58),(19,42,26,60),(21,44,28,62),(23,46,30,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,39),(35,37),(36,40),(42,44),(43,47),(46,48),(49,53),(50,56),(52,54),(57,61),(58,64),(60,62)]])
Matrix representation of Q8⋊4SD16 ►in GL4(𝔽17) generated by
13 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 15 | 0 | 0 |
8 | 0 | 0 | 0 |
0 | 0 | 0 | 10 |
0 | 0 | 12 | 10 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 16 | 1 |
G:=sub<GL(4,GF(17))| [13,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,8,0,0,15,0,0,0,0,0,0,12,0,0,10,10],[1,0,0,0,0,1,0,0,0,0,16,16,0,0,0,1] >;
Q8⋊4SD16 in GAP, Magma, Sage, TeX
Q_8\rtimes_4{\rm SD}_{16}
% in TeX
G:=Group("Q8:4SD16");
// GroupNames label
G:=SmallGroup(128,383);
// by ID
G=gap.SmallGroup(128,383);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,680,422,1123,570,521,136,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export