Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=C8

Direct product G=NxQ with N=C2xQ8 and Q=C8
dρLabelID
Q8xC2xC8128Q8xC2xC8128,1690

Semidirect products G=N:Q with N=C2xQ8 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2xQ8):1C8 = (C2xQ8):C8φ: C8/C2C4 ⊆ Out C2xQ8128(C2xQ8):1C8128,4
(C2xQ8):2C8 = (C2xC42).C4φ: C8/C2C4 ⊆ Out C2xQ832(C2xQ8):2C8128,51
(C2xQ8):3C8 = C42.394D4φ: C8/C4C2 ⊆ Out C2xQ864(C2xQ8):3C8128,193
(C2xQ8):4C8 = C2xQ8:C8φ: C8/C4C2 ⊆ Out C2xQ8128(C2xQ8):4C8128,207
(C2xQ8):5C8 = C42.399D4φ: C8/C4C2 ⊆ Out C2xQ864(C2xQ8):5C8128,211
(C2xQ8):6C8 = C42.327D4φ: C8/C4C2 ⊆ Out C2xQ8128(C2xQ8):6C8128,716
(C2xQ8):7C8 = C42.695C23φ: C8/C4C2 ⊆ Out C2xQ864(C2xQ8):7C8128,1714

Non-split extensions G=N.Q with N=C2xQ8 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2xQ8).1C8 = C23.M4(2)φ: C8/C2C4 ⊆ Out C2xQ864(C2xQ8).1C8128,47
(C2xQ8).2C8 = C23.1M4(2)φ: C8/C2C4 ⊆ Out C2xQ8324(C2xQ8).2C8128,53
(C2xQ8).3C8 = C8.17Q16φ: C8/C2C4 ⊆ Out C2xQ8128(C2xQ8).3C8128,70
(C2xQ8).4C8 = Q8:C16φ: C8/C4C2 ⊆ Out C2xQ8128(C2xQ8).4C8128,69
(C2xQ8).5C8 = (C2xD4).5C8φ: C8/C4C2 ⊆ Out C2xQ864(C2xQ8).5C8128,845
(C2xQ8).6C8 = M5(2).19C22φ: C8/C4C2 ⊆ Out C2xQ8324(C2xQ8).6C8128,847
(C2xQ8).7C8 = C2xD4.C8φ: C8/C4C2 ⊆ Out C2xQ864(C2xQ8).7C8128,848
(C2xQ8).8C8 = M5(2):12C22φ: C8/C4C2 ⊆ Out C2xQ8324(C2xQ8).8C8128,849
(C2xQ8).9C8 = C16:4Q8φ: C8/C4C2 ⊆ Out C2xQ8128(C2xQ8).9C8128,915
(C2xQ8).10C8 = Q8oM5(2)φ: C8/C4C2 ⊆ Out C2xQ8324(C2xQ8).10C8128,2139
(C2xQ8).11C8 = Q8xC16φ: trivial image128(C2xQ8).11C8128,914
(C2xQ8).12C8 = C2xD4oC16φ: trivial image64(C2xQ8).12C8128,2138

׿
x
:
Z
F
o
wr
Q
<