Copied to
clipboard

G = Q8⋊C16order 128 = 27

The semidirect product of Q8 and C16 acting via C16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8⋊C16, C8.18Q16, C8.38SD16, C4.2M5(2), C4⋊C4.5C8, C4.42C4≀C2, C4⋊C8.11C4, C4⋊C16.1C2, C4.2(C2×C16), (C4×C16).3C2, (C8×Q8).1C2, (C2×Q8).4C8, (C2×C8).299D4, C2.2(Q8⋊C8), (C4×Q8).10C4, C2.2(D4.C8), C2.6(C22⋊C16), C42.253(C2×C4), (C4×C8).355C22, (C2×C4).34M4(2), C4.30(Q8⋊C4), C22.36(C22⋊C8), (C2×C4).46(C2×C8), (C2×C4).382(C22⋊C4), SmallGroup(128,69)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — Q8⋊C16
C1C2C4C2×C4C2×C8C4×C8C8×Q8 — Q8⋊C16
C1C2C4 — Q8⋊C16
C1C2×C8C4×C8 — Q8⋊C16
C1C2C2C2C2C2×C4C2×C4C4×C8 — Q8⋊C16

Generators and relations for Q8⋊C16
 G = < a,b,c | a4=c16=1, b2=a2, bab-1=cac-1=a-1, cbc-1=a-1b >

2C4
2C4
2C4
4C4
2C8
2Q8
2C2×C4
2C2×C4
4C8
2C2×C8
2C16
2C16
2C4⋊C4
2C42
4C16
2C4⋊C8
2C2×C16
2C4×C8
2C2×C16

Smallest permutation representation of Q8⋊C16
Regular action on 128 points
Generators in S128
(1 49 37 18)(2 19 38 50)(3 51 39 20)(4 21 40 52)(5 53 41 22)(6 23 42 54)(7 55 43 24)(8 25 44 56)(9 57 45 26)(10 27 46 58)(11 59 47 28)(12 29 48 60)(13 61 33 30)(14 31 34 62)(15 63 35 32)(16 17 36 64)(65 86 107 123)(66 124 108 87)(67 88 109 125)(68 126 110 89)(69 90 111 127)(70 128 112 91)(71 92 97 113)(72 114 98 93)(73 94 99 115)(74 116 100 95)(75 96 101 117)(76 118 102 81)(77 82 103 119)(78 120 104 83)(79 84 105 121)(80 122 106 85)
(1 91 37 128)(2 71 38 97)(3 93 39 114)(4 73 40 99)(5 95 41 116)(6 75 42 101)(7 81 43 118)(8 77 44 103)(9 83 45 120)(10 79 46 105)(11 85 47 122)(12 65 48 107)(13 87 33 124)(14 67 34 109)(15 89 35 126)(16 69 36 111)(17 127 64 90)(18 70 49 112)(19 113 50 92)(20 72 51 98)(21 115 52 94)(22 74 53 100)(23 117 54 96)(24 76 55 102)(25 119 56 82)(26 78 57 104)(27 121 58 84)(28 80 59 106)(29 123 60 86)(30 66 61 108)(31 125 62 88)(32 68 63 110)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,49,37,18)(2,19,38,50)(3,51,39,20)(4,21,40,52)(5,53,41,22)(6,23,42,54)(7,55,43,24)(8,25,44,56)(9,57,45,26)(10,27,46,58)(11,59,47,28)(12,29,48,60)(13,61,33,30)(14,31,34,62)(15,63,35,32)(16,17,36,64)(65,86,107,123)(66,124,108,87)(67,88,109,125)(68,126,110,89)(69,90,111,127)(70,128,112,91)(71,92,97,113)(72,114,98,93)(73,94,99,115)(74,116,100,95)(75,96,101,117)(76,118,102,81)(77,82,103,119)(78,120,104,83)(79,84,105,121)(80,122,106,85), (1,91,37,128)(2,71,38,97)(3,93,39,114)(4,73,40,99)(5,95,41,116)(6,75,42,101)(7,81,43,118)(8,77,44,103)(9,83,45,120)(10,79,46,105)(11,85,47,122)(12,65,48,107)(13,87,33,124)(14,67,34,109)(15,89,35,126)(16,69,36,111)(17,127,64,90)(18,70,49,112)(19,113,50,92)(20,72,51,98)(21,115,52,94)(22,74,53,100)(23,117,54,96)(24,76,55,102)(25,119,56,82)(26,78,57,104)(27,121,58,84)(28,80,59,106)(29,123,60,86)(30,66,61,108)(31,125,62,88)(32,68,63,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;

G:=Group( (1,49,37,18)(2,19,38,50)(3,51,39,20)(4,21,40,52)(5,53,41,22)(6,23,42,54)(7,55,43,24)(8,25,44,56)(9,57,45,26)(10,27,46,58)(11,59,47,28)(12,29,48,60)(13,61,33,30)(14,31,34,62)(15,63,35,32)(16,17,36,64)(65,86,107,123)(66,124,108,87)(67,88,109,125)(68,126,110,89)(69,90,111,127)(70,128,112,91)(71,92,97,113)(72,114,98,93)(73,94,99,115)(74,116,100,95)(75,96,101,117)(76,118,102,81)(77,82,103,119)(78,120,104,83)(79,84,105,121)(80,122,106,85), (1,91,37,128)(2,71,38,97)(3,93,39,114)(4,73,40,99)(5,95,41,116)(6,75,42,101)(7,81,43,118)(8,77,44,103)(9,83,45,120)(10,79,46,105)(11,85,47,122)(12,65,48,107)(13,87,33,124)(14,67,34,109)(15,89,35,126)(16,69,36,111)(17,127,64,90)(18,70,49,112)(19,113,50,92)(20,72,51,98)(21,115,52,94)(22,74,53,100)(23,117,54,96)(24,76,55,102)(25,119,56,82)(26,78,57,104)(27,121,58,84)(28,80,59,106)(29,123,60,86)(30,66,61,108)(31,125,62,88)(32,68,63,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,49,37,18),(2,19,38,50),(3,51,39,20),(4,21,40,52),(5,53,41,22),(6,23,42,54),(7,55,43,24),(8,25,44,56),(9,57,45,26),(10,27,46,58),(11,59,47,28),(12,29,48,60),(13,61,33,30),(14,31,34,62),(15,63,35,32),(16,17,36,64),(65,86,107,123),(66,124,108,87),(67,88,109,125),(68,126,110,89),(69,90,111,127),(70,128,112,91),(71,92,97,113),(72,114,98,93),(73,94,99,115),(74,116,100,95),(75,96,101,117),(76,118,102,81),(77,82,103,119),(78,120,104,83),(79,84,105,121),(80,122,106,85)], [(1,91,37,128),(2,71,38,97),(3,93,39,114),(4,73,40,99),(5,95,41,116),(6,75,42,101),(7,81,43,118),(8,77,44,103),(9,83,45,120),(10,79,46,105),(11,85,47,122),(12,65,48,107),(13,87,33,124),(14,67,34,109),(15,89,35,126),(16,69,36,111),(17,127,64,90),(18,70,49,112),(19,113,50,92),(20,72,51,98),(21,115,52,94),(22,74,53,100),(23,117,54,96),(24,76,55,102),(25,119,56,82),(26,78,57,104),(27,121,58,84),(28,80,59,106),(29,123,60,86),(30,66,61,108),(31,125,62,88),(32,68,63,110)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])

56 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H4I4J4K4L8A···8H8I8J8K8L8M8N8O8P16A···16P16Q···16X
order12224444444444448···88888888816···1616···16
size11111111222244441···1222244442···24···4

56 irreducible representations

dim1111111112222222
type+++++-
imageC1C2C2C2C4C4C8C8C16D4SD16Q16M4(2)C4≀C2M5(2)D4.C8
kernelQ8⋊C16C4×C16C4⋊C16C8×Q8C4⋊C8C4×Q8C4⋊C4C2×Q8Q8C2×C8C8C8C2×C4C4C4C2
# reps11112244162222448

Matrix representation of Q8⋊C16 in GL3(𝔽17) generated by

100
001
0160
,
1600
040
0013
,
1100
0134
044
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[16,0,0,0,4,0,0,0,13],[11,0,0,0,13,4,0,4,4] >;

Q8⋊C16 in GAP, Magma, Sage, TeX

Q_8\rtimes C_{16}
% in TeX

G:=Group("Q8:C16");
// GroupNames label

G:=SmallGroup(128,69);
// by ID

G=gap.SmallGroup(128,69);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,120,422,219,100,136,124]);
// Polycyclic

G:=Group<a,b,c|a^4=c^16=1,b^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^-1*b>;
// generators/relations

Export

Subgroup lattice of Q8⋊C16 in TeX

׿
×
𝔽