extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D8)⋊1C2 = C4×D16 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):1C2 | 128,904 |
(C4×D8)⋊2C2 = D8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):2C2 | 128,938 |
(C4×D8)⋊3C2 = C42.221D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):3C2 | 128,1832 |
(C4×D8)⋊4C2 = C42.384D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):4C2 | 128,1834 |
(C4×D8)⋊5C2 = C42.356C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):5C2 | 128,1854 |
(C4×D8)⋊6C2 = C42.358C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):6C2 | 128,1856 |
(C4×D8)⋊7C2 = C42.308D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):7C2 | 128,1900 |
(C4×D8)⋊8C2 = C42.366D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):8C2 | 128,1901 |
(C4×D8)⋊9C2 = D4×D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):9C2 | 128,2011 |
(C4×D8)⋊10C2 = D8⋊13D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):10C2 | 128,2015 |
(C4×D8)⋊11C2 = D4⋊4D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):11C2 | 128,2026 |
(C4×D8)⋊12C2 = C42.462C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):12C2 | 128,2029 |
(C4×D8)⋊13C2 = C42.468C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):13C2 | 128,2035 |
(C4×D8)⋊14C2 = D4⋊5D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):14C2 | 128,2066 |
(C4×D8)⋊15C2 = C42.490C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):15C2 | 128,2073 |
(C4×D8)⋊16C2 = Q8⋊4D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):16C2 | 128,2090 |
(C4×D8)⋊17C2 = C42.502C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):17C2 | 128,2093 |
(C4×D8)⋊18C2 = Q8⋊5D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):18C2 | 128,2123 |
(C4×D8)⋊19C2 = D8.5D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):19C2 | 128,942 |
(C4×D8)⋊20C2 = C42.225D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):20C2 | 128,1837 |
(C4×D8)⋊21C2 = C42.450D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):21C2 | 128,1838 |
(C4×D8)⋊22C2 = C42.352C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):22C2 | 128,1850 |
(C4×D8)⋊23C2 = C42.353C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):23C2 | 128,1851 |
(C4×D8)⋊24C2 = D8⋊12D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):24C2 | 128,2012 |
(C4×D8)⋊25C2 = C42.488C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):25C2 | 128,2071 |
(C4×D8)⋊26C2 = C42.530C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):26C2 | 128,2128 |
(C4×D8)⋊27C2 = C4×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):27C2 | 128,1676 |
(C4×D8)⋊28C2 = C42.275C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):28C2 | 128,1678 |
(C4×D8)⋊29C2 = C42.255D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):29C2 | 128,1903 |
(C4×D8)⋊30C2 = C42.391C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):30C2 | 128,1911 |
(C4×D8)⋊31C2 = D8⋊4D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):31C2 | 128,2004 |
(C4×D8)⋊32C2 = D8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):32C2 | 128,2005 |
(C4×D8)⋊33C2 = C42.495C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):33C2 | 128,2086 |
(C4×D8)⋊34C2 = C42.496C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):34C2 | 128,2087 |
(C4×D8)⋊35C2 = C42.72C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):35C2 | 128,2129 |
(C4×D8)⋊36C2 = C42.533C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):36C2 | 128,2135 |
(C4×D8)⋊37C2 = D16⋊4C4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):37C2 | 128,909 |
(C4×D8)⋊38C2 = C42.277C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):38C2 | 128,1680 |
(C4×D8)⋊39C2 = C42.280C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):39C2 | 128,1683 |
(C4×D8)⋊40C2 = C42.387C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):40C2 | 128,1907 |
(C4×D8)⋊41C2 = C42.388C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):41C2 | 128,1908 |
(C4×D8)⋊42C2 = C42.471C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):42C2 | 128,2054 |
(C4×D8)⋊43C2 = C42.474C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 32 | | (C4xD8):43C2 | 128,2057 |
(C4×D8)⋊44C2 = C42.479C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):44C2 | 128,2062 |
(C4×D8)⋊45C2 = C42.507C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):45C2 | 128,2098 |
(C4×D8)⋊46C2 = C42.511C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8):46C2 | 128,2102 |
(C4×D8)⋊47C2 = C4×C4○D8 | φ: trivial image | 64 | | (C4xD8):47C2 | 128,1671 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D8).1C2 = C4.16D16 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).1C2 | 128,63 |
(C4×D8).2C2 = C8⋊9D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).2C2 | 128,313 |
(C4×D8).3C2 = C8⋊6D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).3C2 | 128,321 |
(C4×D8).4C2 = C4×SD32 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).4C2 | 128,905 |
(C4×D8).5C2 = D8.4D4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).5C2 | 128,940 |
(C4×D8).6C2 = D8⋊1Q8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).6C2 | 128,956 |
(C4×D8).7C2 = D8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).7C2 | 128,958 |
(C4×D8).8C2 = C42.501C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).8C2 | 128,2092 |
(C4×D8).9C2 = Q8×D8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).9C2 | 128,2110 |
(C4×D8).10C2 = D8⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).10C2 | 128,2112 |
(C4×D8).11C2 = C42.527C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).11C2 | 128,2125 |
(C4×D8).12C2 = D4⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).12C2 | 128,318 |
(C4×D8).13C2 = D8.Q8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).13C2 | 128,960 |
(C4×D8).14C2 = D8⋊C8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).14C2 | 128,65 |
(C4×D8).15C2 = D8⋊5C8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).15C2 | 128,312 |
(C4×D8).16C2 = C8⋊3M4(2) | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).16C2 | 128,326 |
(C4×D8).17C2 = D8⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).17C2 | 128,2116 |
(C4×D8).18C2 = D8⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).18C2 | 128,2121 |
(C4×D8).19C2 = SD32⋊3C4 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).19C2 | 128,907 |
(C4×D8).20C2 = C42.508C23 | φ: C2/C1 → C2 ⊆ Out C4×D8 | 64 | | (C4xD8).20C2 | 128,2099 |
(C4×D8).21C2 = C8×D8 | φ: trivial image | 64 | | (C4xD8).21C2 | 128,307 |