Extensions 1→N→G→Q→1 with N=C4×D8 and Q=C2

Direct product G=N×Q with N=C4×D8 and Q=C2
dρLabelID
C2×C4×D864C2xC4xD8128,1668

Semidirect products G=N:Q with N=C4×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D8)⋊1C2 = C4×D16φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):1C2128,904
(C4×D8)⋊2C2 = D82D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):2C2128,938
(C4×D8)⋊3C2 = C42.221D4φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):3C2128,1832
(C4×D8)⋊4C2 = C42.384D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):4C2128,1834
(C4×D8)⋊5C2 = C42.356C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):5C2128,1854
(C4×D8)⋊6C2 = C42.358C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):6C2128,1856
(C4×D8)⋊7C2 = C42.308D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):7C2128,1900
(C4×D8)⋊8C2 = C42.366D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):8C2128,1901
(C4×D8)⋊9C2 = D4×D8φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):9C2128,2011
(C4×D8)⋊10C2 = D813D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):10C2128,2015
(C4×D8)⋊11C2 = D44D8φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):11C2128,2026
(C4×D8)⋊12C2 = C42.462C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):12C2128,2029
(C4×D8)⋊13C2 = C42.468C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):13C2128,2035
(C4×D8)⋊14C2 = D45D8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):14C2128,2066
(C4×D8)⋊15C2 = C42.490C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):15C2128,2073
(C4×D8)⋊16C2 = Q84D8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):16C2128,2090
(C4×D8)⋊17C2 = C42.502C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):17C2128,2093
(C4×D8)⋊18C2 = Q85D8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):18C2128,2123
(C4×D8)⋊19C2 = D8.5D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):19C2128,942
(C4×D8)⋊20C2 = C42.225D4φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):20C2128,1837
(C4×D8)⋊21C2 = C42.450D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):21C2128,1838
(C4×D8)⋊22C2 = C42.352C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):22C2128,1850
(C4×D8)⋊23C2 = C42.353C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):23C2128,1851
(C4×D8)⋊24C2 = D812D4φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):24C2128,2012
(C4×D8)⋊25C2 = C42.488C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):25C2128,2071
(C4×D8)⋊26C2 = C42.530C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):26C2128,2128
(C4×D8)⋊27C2 = C4×C8⋊C22φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):27C2128,1676
(C4×D8)⋊28C2 = C42.275C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):28C2128,1678
(C4×D8)⋊29C2 = C42.255D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):29C2128,1903
(C4×D8)⋊30C2 = C42.391C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):30C2128,1911
(C4×D8)⋊31C2 = D84D4φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):31C2128,2004
(C4×D8)⋊32C2 = D85D4φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):32C2128,2005
(C4×D8)⋊33C2 = C42.495C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):33C2128,2086
(C4×D8)⋊34C2 = C42.496C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):34C2128,2087
(C4×D8)⋊35C2 = C42.72C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):35C2128,2129
(C4×D8)⋊36C2 = C42.533C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):36C2128,2135
(C4×D8)⋊37C2 = D164C4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):37C2128,909
(C4×D8)⋊38C2 = C42.277C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):38C2128,1680
(C4×D8)⋊39C2 = C42.280C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):39C2128,1683
(C4×D8)⋊40C2 = C42.387C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):40C2128,1907
(C4×D8)⋊41C2 = C42.388C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):41C2128,1908
(C4×D8)⋊42C2 = C42.471C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):42C2128,2054
(C4×D8)⋊43C2 = C42.474C23φ: C2/C1C2 ⊆ Out C4×D832(C4xD8):43C2128,2057
(C4×D8)⋊44C2 = C42.479C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):44C2128,2062
(C4×D8)⋊45C2 = C42.507C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):45C2128,2098
(C4×D8)⋊46C2 = C42.511C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8):46C2128,2102
(C4×D8)⋊47C2 = C4×C4○D8φ: trivial image64(C4xD8):47C2128,1671

Non-split extensions G=N.Q with N=C4×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D8).1C2 = C4.16D16φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).1C2128,63
(C4×D8).2C2 = C89D8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).2C2128,313
(C4×D8).3C2 = C86D8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).3C2128,321
(C4×D8).4C2 = C4×SD32φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).4C2128,905
(C4×D8).5C2 = D8.4D4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).5C2128,940
(C4×D8).6C2 = D81Q8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).6C2128,956
(C4×D8).7C2 = D8⋊Q8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).7C2128,958
(C4×D8).8C2 = C42.501C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).8C2128,2092
(C4×D8).9C2 = Q8×D8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).9C2128,2110
(C4×D8).10C2 = D86Q8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).10C2128,2112
(C4×D8).11C2 = C42.527C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).11C2128,2125
(C4×D8).12C2 = D42M4(2)φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).12C2128,318
(C4×D8).13C2 = D8.Q8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).13C2128,960
(C4×D8).14C2 = D8⋊C8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).14C2128,65
(C4×D8).15C2 = D85C8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).15C2128,312
(C4×D8).16C2 = C83M4(2)φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).16C2128,326
(C4×D8).17C2 = D84Q8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).17C2128,2116
(C4×D8).18C2 = D85Q8φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).18C2128,2121
(C4×D8).19C2 = SD323C4φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).19C2128,907
(C4×D8).20C2 = C42.508C23φ: C2/C1C2 ⊆ Out C4×D864(C4xD8).20C2128,2099
(C4×D8).21C2 = C8×D8φ: trivial image64(C4xD8).21C2128,307

׿
×
𝔽