Copied to
clipboard

G = D4:5D8order 128 = 27

2nd semidirect product of D4 and D8 acting through Inn(D4)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D4:5D8, C42.483C23, C4.692- 1+4, (C8xD4):9C2, (C4xD8):14C2, C4.45(C2xD8), C8:14(C4oD4), D4o2(C2.D8), C8:7D4:15C2, C4:C4.266D4, C8:2Q8:17C2, D4:6D4:14C2, C22.5(C2xD8), D4:Q8:14C2, (C2xD4).354D4, (C4xC8).87C22, C2.54(Q8oD8), C2.20(C22xD8), C4:C4.239C23, C4:C8.299C22, (C2xC8).195C23, (C2xC4).526C24, C22:C4.110D4, C22.D8:9C2, C23.477(C2xD4), C4:Q8.161C22, C2.79(D4:6D4), C2.D8.61C22, (C4xD4).339C22, (C2xD4).248C23, (C2xD8).142C22, C4:D4.97C22, C22:C8.185C22, (C22xC8).164C22, C22.786(C22xD4), D4:C4.169C22, (C22xC4).1158C23, (C2xD4)o(C2.D8), (C2xC2.D8):28C2, C4.108(C2xC4oD4), (C2xC4).171(C2xD4), (C2xC4:C4).678C22, SmallGroup(128,2066)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — D4:5D8
C1C2C4C2xC4C22xC4C2xC4:C4D4:6D4 — D4:5D8
C1C2C2xC4 — D4:5D8
C1C22C4xD4 — D4:5D8
C1C2C2C2xC4 — D4:5D8

Generators and relations for D4:5D8
 G = < a,b,c,d | a4=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 424 in 210 conjugacy classes, 96 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, D8, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4xC8, C22:C8, D4:C4, C4:C8, C2.D8, C2.D8, C2xC4:C4, C4xD4, C4xD4, C4:D4, C22:Q8, C22.D4, C4:Q8, C22xC8, C2xD8, C2xC4oD4, C2xC2.D8, C8xD4, C4xD8, C8:7D4, D4:Q8, C22.D8, C8:2Q8, D4:6D4, D4:5D8
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C4oD4, C24, C2xD8, C22xD4, C2xC4oD4, 2- 1+4, D4:6D4, C22xD8, Q8oD8, D4:5D8

Smallest permutation representation of D4:5D8
On 64 points
Generators in S64
(1 10 59 38)(2 11 60 39)(3 12 61 40)(4 13 62 33)(5 14 63 34)(6 15 64 35)(7 16 57 36)(8 9 58 37)(17 55 43 29)(18 56 44 30)(19 49 45 31)(20 50 46 32)(21 51 47 25)(22 52 48 26)(23 53 41 27)(24 54 42 28)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 49)(17 63)(18 64)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 42)(18 41)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 50)(26 49)(27 56)(28 55)(29 54)(30 53)(31 52)(32 51)(33 34)(35 40)(36 39)(37 38)(57 60)(58 59)(61 64)(62 63)

G:=sub<Sym(64)| (1,10,59,38)(2,11,60,39)(3,12,61,40)(4,13,62,33)(5,14,63,34)(6,15,64,35)(7,16,57,36)(8,9,58,37)(17,55,43,29)(18,56,44,30)(19,49,45,31)(20,50,46,32)(21,51,47,25)(22,52,48,26)(23,53,41,27)(24,54,42,28), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,50)(26,49)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,34)(35,40)(36,39)(37,38)(57,60)(58,59)(61,64)(62,63)>;

G:=Group( (1,10,59,38)(2,11,60,39)(3,12,61,40)(4,13,62,33)(5,14,63,34)(6,15,64,35)(7,16,57,36)(8,9,58,37)(17,55,43,29)(18,56,44,30)(19,49,45,31)(20,50,46,32)(21,51,47,25)(22,52,48,26)(23,53,41,27)(24,54,42,28), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,50)(26,49)(27,56)(28,55)(29,54)(30,53)(31,52)(32,51)(33,34)(35,40)(36,39)(37,38)(57,60)(58,59)(61,64)(62,63) );

G=PermutationGroup([[(1,10,59,38),(2,11,60,39),(3,12,61,40),(4,13,62,33),(5,14,63,34),(6,15,64,35),(7,16,57,36),(8,9,58,37),(17,55,43,29),(18,56,44,30),(19,49,45,31),(20,50,46,32),(21,51,47,25),(22,52,48,26),(23,53,41,27),(24,54,42,28)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,49),(17,63),(18,64),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,42),(18,41),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,50),(26,49),(27,56),(28,55),(29,54),(30,53),(31,52),(32,51),(33,34),(35,40),(36,39),(37,38),(57,60),(58,59),(61,64),(62,63)]])

35 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4K4L4M4N4O8A8B8C8D8E···8J
order122222222244444···4444488888···8
size111122228822224···4888822224···4

35 irreducible representations

dim1111111112222244
type+++++++++++++--
imageC1C2C2C2C2C2C2C2C2D4D4D4C4oD4D82- 1+4Q8oD8
kernelD4:5D8C2xC2.D8C8xD4C4xD8C8:7D4D4:Q8C22.D8C8:2Q8D4:6D4C22:C4C4:C4C2xD4C8D4C4C2
# reps1211224122114812

Matrix representation of D4:5D8 in GL4(F17) generated by

1000
0100
00130
0044
,
16000
01600
0048
001313
,
14300
141400
0010
0001
,
14300
3300
0010
001616
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,4,0,0,0,4],[16,0,0,0,0,16,0,0,0,0,4,13,0,0,8,13],[14,14,0,0,3,14,0,0,0,0,1,0,0,0,0,1],[14,3,0,0,3,3,0,0,0,0,1,16,0,0,0,16] >;

D4:5D8 in GAP, Magma, Sage, TeX

D_4\rtimes_5D_8
% in TeX

G:=Group("D4:5D8");
// GroupNames label

G:=SmallGroup(128,2066);
// by ID

G=gap.SmallGroup(128,2066);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,758,100,346,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<