Copied to
clipboard

G = D813D4order 128 = 27

2nd semidirect product of D8 and D4 acting through Inn(D8)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D813D4, C42.450C23, C4.1372+ 1+4, C4⋊C42D8, C2.67D42, (C8×D4)⋊12C2, (C4×D8)⋊10C2, C42(C4○D8), C8.80(C2×D4), D46D45C2, C4⋊C4.405D4, D4.29(C2×D4), C4⋊Q1611C2, D4.7D46C2, (C2×D4).229D4, (C4×C8).80C22, C2.41(Q8○D8), C22⋊C4.94D4, C4.97(C22×D4), D4.D442C2, C8.18D421C2, C4⋊C8.341C22, C4⋊C4.222C23, (C2×C8).569C23, (C2×C4).481C24, C23.103(C2×D4), C4⋊Q8.137C22, (C4×D4).151C22, (C2×D4).419C23, (C2×D8).175C22, (C2×Q16).35C22, (C2×Q8).202C23, C2.D8.187C22, C22⋊Q8.65C22, C22⋊C8.198C22, (C22×C8).192C22, C22.741(C22×D4), D4⋊C4.166C22, (C22×C4).1125C23, Q8⋊C4.111C22, (C2×SD16).152C22, C4⋊C4(C2×D8), (C2×C4○D8)⋊11C2, C2.54(C2×C4○D8), (C2×C4).919(C2×D4), (C2×C4○D4).192C22, SmallGroup(128,2015)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — D813D4
C1C2C22C2×C4C2×D4C2×C4○D4C2×C4○D8 — D813D4
C1C2C2×C4 — D813D4
C1C22C4×D4 — D813D4
C1C2C2C2×C4 — D813D4

Generators and relations for D813D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a4b, dcd=c-1 >

Subgroups: 472 in 242 conjugacy classes, 96 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C8×D4, C4×D8, D4.7D4, D4.D4, C8.18D4, C4⋊Q16, D46D4, C2×C4○D8, D813D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C4○D8, C22×D4, 2+ 1+4, D42, C2×C4○D8, Q8○D8, D813D4

Smallest permutation representation of D813D4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 32)(8 31)(9 37)(10 36)(11 35)(12 34)(13 33)(14 40)(15 39)(16 38)(17 42)(18 41)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(49 57)(50 64)(51 63)(52 62)(53 61)(54 60)(55 59)(56 58)
(1 19 31 41)(2 20 32 42)(3 21 25 43)(4 22 26 44)(5 23 27 45)(6 24 28 46)(7 17 29 47)(8 18 30 48)(9 54 34 57)(10 55 35 58)(11 56 36 59)(12 49 37 60)(13 50 38 61)(14 51 39 62)(15 52 40 63)(16 53 33 64)
(1 54)(2 55)(3 56)(4 49)(5 50)(6 51)(7 52)(8 53)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,32)(8,31)(9,37)(10,36)(11,35)(12,34)(13,33)(14,40)(15,39)(16,38)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(49,57)(50,64)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58), (1,19,31,41)(2,20,32,42)(3,21,25,43)(4,22,26,44)(5,23,27,45)(6,24,28,46)(7,17,29,47)(8,18,30,48)(9,54,34,57)(10,55,35,58)(11,56,36,59)(12,49,37,60)(13,50,38,61)(14,51,39,62)(15,52,40,63)(16,53,33,64), (1,54)(2,55)(3,56)(4,49)(5,50)(6,51)(7,52)(8,53)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,32)(8,31)(9,37)(10,36)(11,35)(12,34)(13,33)(14,40)(15,39)(16,38)(17,42)(18,41)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(49,57)(50,64)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58), (1,19,31,41)(2,20,32,42)(3,21,25,43)(4,22,26,44)(5,23,27,45)(6,24,28,46)(7,17,29,47)(8,18,30,48)(9,54,34,57)(10,55,35,58)(11,56,36,59)(12,49,37,60)(13,50,38,61)(14,51,39,62)(15,52,40,63)(16,53,33,64), (1,54)(2,55)(3,56)(4,49)(5,50)(6,51)(7,52)(8,53)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,32),(8,31),(9,37),(10,36),(11,35),(12,34),(13,33),(14,40),(15,39),(16,38),(17,42),(18,41),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(49,57),(50,64),(51,63),(52,62),(53,61),(54,60),(55,59),(56,58)], [(1,19,31,41),(2,20,32,42),(3,21,25,43),(4,22,26,44),(5,23,27,45),(6,24,28,46),(7,17,29,47),(8,18,30,48),(9,54,34,57),(10,55,35,58),(11,56,36,59),(12,49,37,60),(13,50,38,61),(14,51,39,62),(15,52,40,63),(16,53,33,64)], [(1,54),(2,55),(3,56),(4,49),(5,50),(6,51),(7,52),(8,53),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)]])

35 conjugacy classes

class 1 2A2B2C2D···2I4A···4H4I4J···4O8A8B8C8D8E···8J
order12222···24···444···488888···8
size11114···42···248···822224···4

35 irreducible representations

dim1111111112222244
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2D4D4D4D4C4○D82+ 1+4Q8○D8
kernelD813D4C8×D4C4×D8D4.7D4D4.D4C8.18D4C4⋊Q16D46D4C2×C4○D8C22⋊C4C4⋊C4D8C2×D4C4C4C2
# reps1114221222141812

Matrix representation of D813D4 in GL4(𝔽17) generated by

16000
01600
0006
00146
,
1000
0100
0006
0030
,
5300
141200
00160
00016
,
141200
5300
00138
00134
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,14,0,0,6,6],[1,0,0,0,0,1,0,0,0,0,0,3,0,0,6,0],[5,14,0,0,3,12,0,0,0,0,16,0,0,0,0,16],[14,5,0,0,12,3,0,0,0,0,13,13,0,0,8,4] >;

D813D4 in GAP, Magma, Sage, TeX

D_8\rtimes_{13}D_4
% in TeX

G:=Group("D8:13D4");
// GroupNames label

G:=SmallGroup(128,2015);
// by ID

G=gap.SmallGroup(128,2015);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,352,2019,346,2804,1411,375,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽