Extensions 1→N→G→Q→1 with N=C2xD8 and Q=C4

Direct product G=NxQ with N=C2xD8 and Q=C4
dρLabelID
C2xC4xD864C2xC4xD8128,1668

Semidirect products G=N:Q with N=C2xD8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xD8):1C4 = C22.SD32φ: C4/C1C4 ⊆ Out C2xD832(C2xD8):1C4128,79
(C2xD8):2C4 = C23.D8φ: C4/C1C4 ⊆ Out C2xD8168+(C2xD8):2C4128,71
(C2xD8):3C4 = M4(2).47D4φ: C4/C1C4 ⊆ Out C2xD8168+(C2xD8):3C4128,635
(C2xD8):4C4 = C42.5D4φ: C4/C1C4 ⊆ Out C2xD8168+(C2xD8):4C4128,636
(C2xD8):5C4 = M4(2).43D4φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):5C4128,608
(C2xD8):6C4 = (C2xC4):9D8φ: C4/C2C2 ⊆ Out C2xD864(C2xD8):6C4128,611
(C2xD8):7C4 = (C2xC4):6D8φ: C4/C2C2 ⊆ Out C2xD864(C2xD8):7C4128,702
(C2xD8):8C4 = C42.326D4φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):8C4128,706
(C2xD8):9C4 = C2xC2.D16φ: C4/C2C2 ⊆ Out C2xD864(C2xD8):9C4128,868
(C2xD8):10C4 = (C2xD8):10C4φ: C4/C2C2 ⊆ Out C2xD864(C2xD8):10C4128,704
(C2xD8):11C4 = C42.116D4φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):11C4128,707
(C2xD8):12C4 = M4(2).30D4φ: C4/C2C2 ⊆ Out C2xD8324(C2xD8):12C4128,708
(C2xD8):13C4 = M4(2).32D4φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):13C4128,710
(C2xD8):14C4 = C23.40D8φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):14C4128,872
(C2xD8):15C4 = C2xD8:2C4φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):15C4128,876
(C2xD8):16C4 = C23.13D8φ: C4/C2C2 ⊆ Out C2xD8324(C2xD8):16C4128,877
(C2xD8):17C4 = C2xD8:C4φ: C4/C2C2 ⊆ Out C2xD864(C2xD8):17C4128,1674
(C2xD8):18C4 = C42.277C23φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):18C4128,1680
(C2xD8):19C4 = C2xC8.26D4φ: C4/C2C2 ⊆ Out C2xD832(C2xD8):19C4128,1686
(C2xD8):20C4 = M4(2)oD8φ: C4/C2C2 ⊆ Out C2xD8324(C2xD8):20C4128,1689
(C2xD8):21C4 = C2xC8oD8φ: trivial image32(C2xD8):21C4128,1685

Non-split extensions G=N.Q with N=C2xD8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xD8).1C4 = C23.12SD16φ: C4/C1C4 ⊆ Out C2xD864(C2xD8).1C4128,81
(C2xD8).2C4 = C8.30D8φ: C4/C1C4 ⊆ Out C2xD864(C2xD8).2C4128,92
(C2xD8).3C4 = C4.D16φ: C4/C1C4 ⊆ Out C2xD864(C2xD8).3C4128,93
(C2xD8).4C4 = C23.SD16φ: C4/C1C4 ⊆ Out C2xD8168+(C2xD8).4C4128,73
(C2xD8).5C4 = C4.16D16φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).5C4128,63
(C2xD8).6C4 = C8:9D8φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).6C4128,313
(C2xD8).7C4 = D4:2M4(2)φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).7C4128,318
(C2xD8).8C4 = C8:6D8φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).8C4128,321
(C2xD8).9C4 = C2xD8.C4φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).9C4128,874
(C2xD8).10C4 = D8:C8φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).10C4128,65
(C2xD8).11C4 = D8:5C8φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).11C4128,312
(C2xD8).12C4 = C8:3M4(2)φ: C4/C2C2 ⊆ Out C2xD864(C2xD8).12C4128,326
(C2xD8).13C4 = C23.20SD16φ: C4/C2C2 ⊆ Out C2xD8324(C2xD8).13C4128,875
(C2xD8).14C4 = C2xM5(2):C2φ: C4/C2C2 ⊆ Out C2xD832(C2xD8).14C4128,878
(C2xD8).15C4 = C8xD8φ: trivial image64(C2xD8).15C4128,307

׿
x
:
Z
F
o
wr
Q
<