p-group, metabelian, nilpotent (class 4), monomial
Aliases: C8.30D8, C8.35SD16, C42.35D4, C4⋊C16⋊3C2, C8⋊2C8⋊1C2, (C2×D8).2C4, (C2×C4).104D8, (C2×C8).359D4, (C2×Q16).2C4, (C4×C8).99C22, (C2×C4).15SD16, C4.4(D4⋊C4), C2.6(D8⋊2C4), C8.12D4.1C2, C2.6(C4.D8), C4.1(C4.D4), C2.6(D8.C4), C22.59(D4⋊C4), (C2×C8).21(C2×C4), (C2×C4).221(C22⋊C4), SmallGroup(128,92)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.30D8
G = < a,b,c | a8=b8=1, c2=a, bab-1=a3, ac=ca, cbc-1=ab-1 >
Character table of C8.30D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ16 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1615+ζ1613 | ζ163+ζ16 | ζ167+ζ165 | ζ1611+ζ16 | ζ1615+ζ165 | ζ1611+ζ169 | ζ1613+ζ167 | ζ169+ζ163 | complex lifted from D8.C4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ163+ζ16 | ζ1615+ζ1613 | ζ1611+ζ169 | ζ1615+ζ165 | ζ1611+ζ16 | ζ167+ζ165 | ζ169+ζ163 | ζ1613+ζ167 | complex lifted from D8.C4 |
ρ21 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1613+ζ167 | ζ169+ζ163 | ζ1615+ζ165 | ζ163+ζ16 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ167+ζ165 | ζ1611+ζ169 | complex lifted from D8.C4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1615+ζ165 | ζ1611+ζ16 | ζ1613+ζ167 | ζ1611+ζ169 | ζ167+ζ165 | ζ169+ζ163 | ζ1615+ζ1613 | ζ163+ζ16 | complex lifted from D8.C4 |
ρ23 | 2 | -2 | -2 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1611+ζ169 | ζ167+ζ165 | ζ163+ζ16 | ζ1613+ζ167 | ζ169+ζ163 | ζ1615+ζ1613 | ζ1611+ζ16 | ζ1615+ζ165 | complex lifted from D8.C4 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ169+ζ163 | ζ1613+ζ167 | ζ1611+ζ16 | ζ1615+ζ1613 | ζ163+ζ16 | ζ1615+ζ165 | ζ1611+ζ169 | ζ167+ζ165 | complex lifted from D8.C4 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1611+ζ16 | ζ1615+ζ165 | ζ169+ζ163 | ζ167+ζ165 | ζ1611+ζ169 | ζ1613+ζ167 | ζ163+ζ16 | ζ1615+ζ1613 | complex lifted from D8.C4 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ167+ζ165 | ζ1611+ζ169 | ζ1615+ζ1613 | ζ169+ζ163 | ζ1613+ζ167 | ζ163+ζ16 | ζ1615+ζ165 | ζ1611+ζ16 | complex lifted from D8.C4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊2C4 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊2C4 |
(1 3 5 7 9 11 13 15)(2 4 6 8 10 12 14 16)(17 19 21 23 25 27 29 31)(18 20 22 24 26 28 30 32)(33 35 37 39 41 43 45 47)(34 36 38 40 42 44 46 48)(49 51 53 55 57 59 61 63)(50 52 54 56 58 60 62 64)
(1 33 52 28 29 59 42 16)(2 7 35 58 30 19 61 48)(3 39 54 18 31 49 44 6)(4 13 37 64 32 25 63 38)(5 45 56 24 17 55 46 12)(8 9 41 60 20 21 51 34)(10 15 43 50 22 27 53 40)(11 47 62 26 23 57 36 14)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,19,21,23,25,27,29,31)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,51,53,55,57,59,61,63)(50,52,54,56,58,60,62,64), (1,33,52,28,29,59,42,16)(2,7,35,58,30,19,61,48)(3,39,54,18,31,49,44,6)(4,13,37,64,32,25,63,38)(5,45,56,24,17,55,46,12)(8,9,41,60,20,21,51,34)(10,15,43,50,22,27,53,40)(11,47,62,26,23,57,36,14), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;
G:=Group( (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,19,21,23,25,27,29,31)(18,20,22,24,26,28,30,32)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,51,53,55,57,59,61,63)(50,52,54,56,58,60,62,64), (1,33,52,28,29,59,42,16)(2,7,35,58,30,19,61,48)(3,39,54,18,31,49,44,6)(4,13,37,64,32,25,63,38)(5,45,56,24,17,55,46,12)(8,9,41,60,20,21,51,34)(10,15,43,50,22,27,53,40)(11,47,62,26,23,57,36,14), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,3,5,7,9,11,13,15),(2,4,6,8,10,12,14,16),(17,19,21,23,25,27,29,31),(18,20,22,24,26,28,30,32),(33,35,37,39,41,43,45,47),(34,36,38,40,42,44,46,48),(49,51,53,55,57,59,61,63),(50,52,54,56,58,60,62,64)], [(1,33,52,28,29,59,42,16),(2,7,35,58,30,19,61,48),(3,39,54,18,31,49,44,6),(4,13,37,64,32,25,63,38),(5,45,56,24,17,55,46,12),(8,9,41,60,20,21,51,34),(10,15,43,50,22,27,53,40),(11,47,62,26,23,57,36,14)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])
Matrix representation of C8.30D8 ►in GL4(𝔽17) generated by
12 | 12 | 0 | 0 |
5 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
15 | 14 | 0 | 0 |
14 | 2 | 0 | 0 |
0 | 0 | 3 | 3 |
0 | 0 | 14 | 3 |
15 | 14 | 0 | 0 |
3 | 15 | 0 | 0 |
0 | 0 | 3 | 3 |
0 | 0 | 3 | 14 |
G:=sub<GL(4,GF(17))| [12,5,0,0,12,12,0,0,0,0,1,0,0,0,0,1],[15,14,0,0,14,2,0,0,0,0,3,14,0,0,3,3],[15,3,0,0,14,15,0,0,0,0,3,3,0,0,3,14] >;
C8.30D8 in GAP, Magma, Sage, TeX
C_8._{30}D_8
% in TeX
G:=Group("C8.30D8");
// GroupNames label
G:=SmallGroup(128,92);
// by ID
G=gap.SmallGroup(128,92);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,387,520,1690,192,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=a,b*a*b^-1=a^3,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C8.30D8 in TeX
Character table of C8.30D8 in TeX