p-group, metabelian, nilpotent (class 4), monomial
Aliases: C4.9D16, C8.26D8, C4.11SD32, C8.32SD16, C42.36D4, C4⋊C16⋊4C2, C8⋊1C8⋊2C2, (C2×D8).3C4, C8⋊4D4.1C2, (C2×C8).333D4, (C2×C4).119D8, (C4×C8).33C22, (C2×C4).16SD16, C4.5(D4⋊C4), C2.4(C2.D16), C2.7(C4.D8), C4.2(C4.D4), C2.4(M5(2)⋊C2), C22.60(D4⋊C4), (C2×C8).22(C2×C4), (C2×C4).222(C22⋊C4), SmallGroup(128,93)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.D16
G = < a,b,c | a4=b16=1, c2=a, bab-1=a-1, ac=ca, cbc-1=ab-1 >
Character table of C4.D16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ16 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ165+ζ163 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | complex lifted from SD32 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ23 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ167+ζ16 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | complex lifted from SD32 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | complex lifted from SD32 |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1615+ζ169 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2)⋊C2 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from M5(2)⋊C2 |
(1 35 17 57)(2 58 18 36)(3 37 19 59)(4 60 20 38)(5 39 21 61)(6 62 22 40)(7 41 23 63)(8 64 24 42)(9 43 25 49)(10 50 26 44)(11 45 27 51)(12 52 28 46)(13 47 29 53)(14 54 30 48)(15 33 31 55)(16 56 32 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 56 35 32 17 34 57 16)(2 15 58 33 18 31 36 55)(3 54 37 30 19 48 59 14)(4 13 60 47 20 29 38 53)(5 52 39 28 21 46 61 12)(6 11 62 45 22 27 40 51)(7 50 41 26 23 44 63 10)(8 9 64 43 24 25 42 49)
G:=sub<Sym(64)| (1,35,17,57)(2,58,18,36)(3,37,19,59)(4,60,20,38)(5,39,21,61)(6,62,22,40)(7,41,23,63)(8,64,24,42)(9,43,25,49)(10,50,26,44)(11,45,27,51)(12,52,28,46)(13,47,29,53)(14,54,30,48)(15,33,31,55)(16,56,32,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,56,35,32,17,34,57,16)(2,15,58,33,18,31,36,55)(3,54,37,30,19,48,59,14)(4,13,60,47,20,29,38,53)(5,52,39,28,21,46,61,12)(6,11,62,45,22,27,40,51)(7,50,41,26,23,44,63,10)(8,9,64,43,24,25,42,49)>;
G:=Group( (1,35,17,57)(2,58,18,36)(3,37,19,59)(4,60,20,38)(5,39,21,61)(6,62,22,40)(7,41,23,63)(8,64,24,42)(9,43,25,49)(10,50,26,44)(11,45,27,51)(12,52,28,46)(13,47,29,53)(14,54,30,48)(15,33,31,55)(16,56,32,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,56,35,32,17,34,57,16)(2,15,58,33,18,31,36,55)(3,54,37,30,19,48,59,14)(4,13,60,47,20,29,38,53)(5,52,39,28,21,46,61,12)(6,11,62,45,22,27,40,51)(7,50,41,26,23,44,63,10)(8,9,64,43,24,25,42,49) );
G=PermutationGroup([[(1,35,17,57),(2,58,18,36),(3,37,19,59),(4,60,20,38),(5,39,21,61),(6,62,22,40),(7,41,23,63),(8,64,24,42),(9,43,25,49),(10,50,26,44),(11,45,27,51),(12,52,28,46),(13,47,29,53),(14,54,30,48),(15,33,31,55),(16,56,32,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,56,35,32,17,34,57,16),(2,15,58,33,18,31,36,55),(3,54,37,30,19,48,59,14),(4,13,60,47,20,29,38,53),(5,52,39,28,21,46,61,12),(6,11,62,45,22,27,40,51),(7,50,41,26,23,44,63,10),(8,9,64,43,24,25,42,49)]])
Matrix representation of C4.D16 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 5 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 10 | 8 |
0 | 0 | 13 | 2 |
5 | 12 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 10 | 8 |
0 | 0 | 11 | 7 |
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[12,5,0,0,5,5,0,0,0,0,10,13,0,0,8,2],[5,5,0,0,12,5,0,0,0,0,10,11,0,0,8,7] >;
C4.D16 in GAP, Magma, Sage, TeX
C_4.D_{16}
% in TeX
G:=Group("C4.D16");
// GroupNames label
G:=SmallGroup(128,93);
// by ID
G=gap.SmallGroup(128,93);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,387,520,1690,416,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^4=b^16=1,c^2=a,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C4.D16 in TeX
Character table of C4.D16 in TeX