extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xC4oD4).1C4 = C23.M4(2) | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).1C4 | 128,47 |
(C2xC4oD4).2C4 = C23.1M4(2) | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 32 | 4 | (C2xC4oD4).2C4 | 128,53 |
(C2xC4oD4).3C4 = C42.405D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).3C4 | 128,257 |
(C2xC4oD4).4C4 = C42.67D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).4C4 | 128,262 |
(C2xC4oD4).5C4 = C42.73D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).5C4 | 128,268 |
(C2xC4oD4).6C4 = C42.411D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).6C4 | 128,275 |
(C2xC4oD4).7C4 = C42.80D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).7C4 | 128,283 |
(C2xC4oD4).8C4 = C42.87D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).8C4 | 128,292 |
(C2xC4oD4).9C4 = (C2xD4).135D4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 16 | 4 | (C2xC4oD4).9C4 | 128,864 |
(C2xC4oD4).10C4 = C4:Q8.C4 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 32 | 8- | (C2xC4oD4).10C4 | 128,865 |
(C2xC4oD4).11C4 = M4(2).24C23 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 16 | 8+ | (C2xC4oD4).11C4 | 128,1620 |
(C2xC4oD4).12C4 = M4(2).25C23 | φ: C4/C1 → C4 ⊆ Out C2xC4oD4 | 32 | 8- | (C2xC4oD4).12C4 | 128,1621 |
(C2xC4oD4).13C4 = C42.455D4 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).13C4 | 128,208 |
(C2xC4oD4).14C4 = C42.397D4 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).14C4 | 128,209 |
(C2xC4oD4).15C4 = C42.374D4 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).15C4 | 128,220 |
(C2xC4oD4).16C4 = D4:4M4(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).16C4 | 128,221 |
(C2xC4oD4).17C4 = (C2xD4).5C8 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).17C4 | 128,845 |
(C2xC4oD4).18C4 = M5(2).19C22 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | 4 | (C2xC4oD4).18C4 | 128,847 |
(C2xC4oD4).19C4 = C2xD4.C8 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).19C4 | 128,848 |
(C2xC4oD4).20C4 = M5(2):12C22 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | 4 | (C2xC4oD4).20C4 | 128,849 |
(C2xC4oD4).21C4 = C2x(C22xC8):C2 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).21C4 | 128,1610 |
(C2xC4oD4).22C4 = C24.73(C2xC4) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | | (C2xC4oD4).22C4 | 128,1611 |
(C2xC4oD4).23C4 = D4o(C22:C8) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | | (C2xC4oD4).23C4 | 128,1612 |
(C2xC4oD4).24C4 = C2xM4(2).8C22 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | | (C2xC4oD4).24C4 | 128,1619 |
(C2xC4oD4).25C4 = C42.290C23 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).25C4 | 128,1697 |
(C2xC4oD4).26C4 = D4:6M4(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).26C4 | 128,1702 |
(C2xC4oD4).27C4 = Q8:6M4(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).27C4 | 128,1703 |
(C2xC4oD4).28C4 = C42.697C23 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).28C4 | 128,1720 |
(C2xC4oD4).29C4 = C42.698C23 | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).29C4 | 128,1721 |
(C2xC4oD4).30C4 = D4:8M4(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).30C4 | 128,1722 |
(C2xC4oD4).31C4 = Q8:7M4(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 64 | | (C2xC4oD4).31C4 | 128,1723 |
(C2xC4oD4).32C4 = Q8oM5(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | 4 | (C2xC4oD4).32C4 | 128,2139 |
(C2xC4oD4).33C4 = C2xQ8oM4(2) | φ: C4/C2 → C2 ⊆ Out C2xC4oD4 | 32 | | (C2xC4oD4).33C4 | 128,2304 |
(C2xC4oD4).34C4 = C8xC4oD4 | φ: trivial image | 64 | | (C2xC4oD4).34C4 | 128,1696 |
(C2xC4oD4).35C4 = C2xD4oC16 | φ: trivial image | 64 | | (C2xC4oD4).35C4 | 128,2138 |
(C2xC4oD4).36C4 = C22xC8oD4 | φ: trivial image | 64 | | (C2xC4oD4).36C4 | 128,2303 |