extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4)⋊1C4 = C24.53D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):1C4 | 128,233 |
(C2×C4○D4)⋊2C4 = C24.150D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):2C4 | 128,236 |
(C2×C4○D4)⋊3C4 = C24.58D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):3C4 | 128,245 |
(C2×C4○D4)⋊4C4 = C24.59D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):4C4 | 128,248 |
(C2×C4○D4)⋊5C4 = C4○D4.D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4):5C4 | 128,527 |
(C2×C4○D4)⋊6C4 = (C22×Q8)⋊C4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4):6C4 | 128,528 |
(C2×C4○D4)⋊7C4 = C4⋊Q8⋊29C4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4):7C4 | 128,858 |
(C2×C4○D4)⋊8C4 = C24.39D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4):8C4 | 128,859 |
(C2×C4○D4)⋊9C4 = C23.C24 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4):9C4 | 128,1615 |
(C2×C4○D4)⋊10C4 = C23.4C24 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4):10C4 | 128,1616 |
(C2×C4○D4)⋊11C4 = C24.65D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):11C4 | 128,520 |
(C2×C4○D4)⋊12C4 = C24.66D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):12C4 | 128,521 |
(C2×C4○D4)⋊13C4 = C23.179C24 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):13C4 | 128,1029 |
(C2×C4○D4)⋊14C4 = C24.542C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):14C4 | 128,1043 |
(C2×C4○D4)⋊15C4 = C24.549C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):15C4 | 128,1071 |
(C2×C4○D4)⋊16C4 = C23.223C24 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):16C4 | 128,1073 |
(C2×C4○D4)⋊17C4 = C2×C23.C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):17C4 | 128,1614 |
(C2×C4○D4)⋊18C4 = C2×C23.24D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):18C4 | 128,1624 |
(C2×C4○D4)⋊19C4 = C2×C23.36D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):19C4 | 128,1627 |
(C2×C4○D4)⋊20C4 = C24.98D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):20C4 | 128,1628 |
(C2×C4○D4)⋊21C4 = C22×C4≀C2 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):21C4 | 128,1631 |
(C2×C4○D4)⋊22C4 = C2×C42⋊C22 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):22C4 | 128,1632 |
(C2×C4○D4)⋊23C4 = C2×C23.33C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):23C4 | 128,2159 |
(C2×C4○D4)⋊24C4 = C22.14C25 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):24C4 | 128,2160 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4).1C4 = C23.M4(2) | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).1C4 | 128,47 |
(C2×C4○D4).2C4 = C23.1M4(2) | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).2C4 | 128,53 |
(C2×C4○D4).3C4 = C42.405D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).3C4 | 128,257 |
(C2×C4○D4).4C4 = C42.67D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).4C4 | 128,262 |
(C2×C4○D4).5C4 = C42.73D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).5C4 | 128,268 |
(C2×C4○D4).6C4 = C42.411D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).6C4 | 128,275 |
(C2×C4○D4).7C4 = C42.80D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).7C4 | 128,283 |
(C2×C4○D4).8C4 = C42.87D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).8C4 | 128,292 |
(C2×C4○D4).9C4 = (C2×D4).135D4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).9C4 | 128,864 |
(C2×C4○D4).10C4 = C4⋊Q8.C4 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).10C4 | 128,865 |
(C2×C4○D4).11C4 = M4(2).24C23 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 16 | 8+ | (C2xC4oD4).11C4 | 128,1620 |
(C2×C4○D4).12C4 = M4(2).25C23 | φ: C4/C1 → C4 ⊆ Out C2×C4○D4 | 32 | 8- | (C2xC4oD4).12C4 | 128,1621 |
(C2×C4○D4).13C4 = C42.455D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).13C4 | 128,208 |
(C2×C4○D4).14C4 = C42.397D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).14C4 | 128,209 |
(C2×C4○D4).15C4 = C42.374D4 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).15C4 | 128,220 |
(C2×C4○D4).16C4 = D4⋊4M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).16C4 | 128,221 |
(C2×C4○D4).17C4 = (C2×D4).5C8 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).17C4 | 128,845 |
(C2×C4○D4).18C4 = M5(2).19C22 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).18C4 | 128,847 |
(C2×C4○D4).19C4 = C2×D4.C8 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).19C4 | 128,848 |
(C2×C4○D4).20C4 = M5(2)⋊12C22 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).20C4 | 128,849 |
(C2×C4○D4).21C4 = C2×(C22×C8)⋊C2 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).21C4 | 128,1610 |
(C2×C4○D4).22C4 = C24.73(C2×C4) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).22C4 | 128,1611 |
(C2×C4○D4).23C4 = D4○(C22⋊C8) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).23C4 | 128,1612 |
(C2×C4○D4).24C4 = C2×M4(2).8C22 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).24C4 | 128,1619 |
(C2×C4○D4).25C4 = C42.290C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).25C4 | 128,1697 |
(C2×C4○D4).26C4 = D4⋊6M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).26C4 | 128,1702 |
(C2×C4○D4).27C4 = Q8⋊6M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).27C4 | 128,1703 |
(C2×C4○D4).28C4 = C42.697C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).28C4 | 128,1720 |
(C2×C4○D4).29C4 = C42.698C23 | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).29C4 | 128,1721 |
(C2×C4○D4).30C4 = D4⋊8M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).30C4 | 128,1722 |
(C2×C4○D4).31C4 = Q8⋊7M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).31C4 | 128,1723 |
(C2×C4○D4).32C4 = Q8○M5(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).32C4 | 128,2139 |
(C2×C4○D4).33C4 = C2×Q8○M4(2) | φ: C4/C2 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).33C4 | 128,2304 |
(C2×C4○D4).34C4 = C8×C4○D4 | φ: trivial image | 64 | | (C2xC4oD4).34C4 | 128,1696 |
(C2×C4○D4).35C4 = C2×D4○C16 | φ: trivial image | 64 | | (C2xC4oD4).35C4 | 128,2138 |
(C2×C4○D4).36C4 = C22×C8○D4 | φ: trivial image | 64 | | (C2xC4oD4).36C4 | 128,2303 |