Extensions 1→N→G→Q→1 with N=C2xC4oD4 and Q=C4

Direct product G=NxQ with N=C2xC4oD4 and Q=C4
dρLabelID
C2xC4xC4oD464C2xC4xC4oD4128,2156

Semidirect products G=N:Q with N=C2xC4oD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xC4oD4):1C4 = C24.53D4φ: C4/C1C4 ⊆ Out C2xC4oD432(C2xC4oD4):1C4128,233
(C2xC4oD4):2C4 = C24.150D4φ: C4/C1C4 ⊆ Out C2xC4oD416(C2xC4oD4):2C4128,236
(C2xC4oD4):3C4 = C24.58D4φ: C4/C1C4 ⊆ Out C2xC4oD432(C2xC4oD4):3C4128,245
(C2xC4oD4):4C4 = C24.59D4φ: C4/C1C4 ⊆ Out C2xC4oD432(C2xC4oD4):4C4128,248
(C2xC4oD4):5C4 = C4oD4.D4φ: C4/C1C4 ⊆ Out C2xC4oD4168+(C2xC4oD4):5C4128,527
(C2xC4oD4):6C4 = (C22xQ8):C4φ: C4/C1C4 ⊆ Out C2xC4oD4328-(C2xC4oD4):6C4128,528
(C2xC4oD4):7C4 = C4:Q8:29C4φ: C4/C1C4 ⊆ Out C2xC4oD4164(C2xC4oD4):7C4128,858
(C2xC4oD4):8C4 = C24.39D4φ: C4/C1C4 ⊆ Out C2xC4oD4168+(C2xC4oD4):8C4128,859
(C2xC4oD4):9C4 = C23.C24φ: C4/C1C4 ⊆ Out C2xC4oD4168+(C2xC4oD4):9C4128,1615
(C2xC4oD4):10C4 = C23.4C24φ: C4/C1C4 ⊆ Out C2xC4oD4328-(C2xC4oD4):10C4128,1616
(C2xC4oD4):11C4 = C24.65D4φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):11C4128,520
(C2xC4oD4):12C4 = C24.66D4φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4):12C4128,521
(C2xC4oD4):13C4 = C23.179C24φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):13C4128,1029
(C2xC4oD4):14C4 = C24.542C23φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):14C4128,1043
(C2xC4oD4):15C4 = C24.549C23φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):15C4128,1071
(C2xC4oD4):16C4 = C23.223C24φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):16C4128,1073
(C2xC4oD4):17C4 = C2xC23.C23φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4):17C4128,1614
(C2xC4oD4):18C4 = C2xC23.24D4φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):18C4128,1624
(C2xC4oD4):19C4 = C2xC23.36D4φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):19C4128,1627
(C2xC4oD4):20C4 = C24.98D4φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4):20C4128,1628
(C2xC4oD4):21C4 = C22xC4wrC2φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4):21C4128,1631
(C2xC4oD4):22C4 = C2xC42:C22φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4):22C4128,1632
(C2xC4oD4):23C4 = C2xC23.33C23φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4):23C4128,2159
(C2xC4oD4):24C4 = C22.14C25φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4):24C4128,2160

Non-split extensions G=N.Q with N=C2xC4oD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xC4oD4).1C4 = C23.M4(2)φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).1C4128,47
(C2xC4oD4).2C4 = C23.1M4(2)φ: C4/C1C4 ⊆ Out C2xC4oD4324(C2xC4oD4).2C4128,53
(C2xC4oD4).3C4 = C42.405D4φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).3C4128,257
(C2xC4oD4).4C4 = C42.67D4φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).4C4128,262
(C2xC4oD4).5C4 = C42.73D4φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).5C4128,268
(C2xC4oD4).6C4 = C42.411D4φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).6C4128,275
(C2xC4oD4).7C4 = C42.80D4φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).7C4128,283
(C2xC4oD4).8C4 = C42.87D4φ: C4/C1C4 ⊆ Out C2xC4oD464(C2xC4oD4).8C4128,292
(C2xC4oD4).9C4 = (C2xD4).135D4φ: C4/C1C4 ⊆ Out C2xC4oD4164(C2xC4oD4).9C4128,864
(C2xC4oD4).10C4 = C4:Q8.C4φ: C4/C1C4 ⊆ Out C2xC4oD4328-(C2xC4oD4).10C4128,865
(C2xC4oD4).11C4 = M4(2).24C23φ: C4/C1C4 ⊆ Out C2xC4oD4168+(C2xC4oD4).11C4128,1620
(C2xC4oD4).12C4 = M4(2).25C23φ: C4/C1C4 ⊆ Out C2xC4oD4328-(C2xC4oD4).12C4128,1621
(C2xC4oD4).13C4 = C42.455D4φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).13C4128,208
(C2xC4oD4).14C4 = C42.397D4φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).14C4128,209
(C2xC4oD4).15C4 = C42.374D4φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).15C4128,220
(C2xC4oD4).16C4 = D4:4M4(2)φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).16C4128,221
(C2xC4oD4).17C4 = (C2xD4).5C8φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).17C4128,845
(C2xC4oD4).18C4 = M5(2).19C22φ: C4/C2C2 ⊆ Out C2xC4oD4324(C2xC4oD4).18C4128,847
(C2xC4oD4).19C4 = C2xD4.C8φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).19C4128,848
(C2xC4oD4).20C4 = M5(2):12C22φ: C4/C2C2 ⊆ Out C2xC4oD4324(C2xC4oD4).20C4128,849
(C2xC4oD4).21C4 = C2x(C22xC8):C2φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).21C4128,1610
(C2xC4oD4).22C4 = C24.73(C2xC4)φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4).22C4128,1611
(C2xC4oD4).23C4 = D4o(C22:C8)φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4).23C4128,1612
(C2xC4oD4).24C4 = C2xM4(2).8C22φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4).24C4128,1619
(C2xC4oD4).25C4 = C42.290C23φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).25C4128,1697
(C2xC4oD4).26C4 = D4:6M4(2)φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).26C4128,1702
(C2xC4oD4).27C4 = Q8:6M4(2)φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).27C4128,1703
(C2xC4oD4).28C4 = C42.697C23φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).28C4128,1720
(C2xC4oD4).29C4 = C42.698C23φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).29C4128,1721
(C2xC4oD4).30C4 = D4:8M4(2)φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).30C4128,1722
(C2xC4oD4).31C4 = Q8:7M4(2)φ: C4/C2C2 ⊆ Out C2xC4oD464(C2xC4oD4).31C4128,1723
(C2xC4oD4).32C4 = Q8oM5(2)φ: C4/C2C2 ⊆ Out C2xC4oD4324(C2xC4oD4).32C4128,2139
(C2xC4oD4).33C4 = C2xQ8oM4(2)φ: C4/C2C2 ⊆ Out C2xC4oD432(C2xC4oD4).33C4128,2304
(C2xC4oD4).34C4 = C8xC4oD4φ: trivial image64(C2xC4oD4).34C4128,1696
(C2xC4oD4).35C4 = C2xD4oC16φ: trivial image64(C2xC4oD4).35C4128,2138
(C2xC4oD4).36C4 = C22xC8oD4φ: trivial image64(C2xC4oD4).36C4128,2303

׿
x
:
Z
F
o
wr
Q
<