p-group, metabelian, nilpotent (class 4), monomial
Aliases: C4⋊Q8⋊29C4, (C2×C42)⋊11C4, C23.9(C2×D4), C4○(C42⋊3C4), C4○(C42⋊C4), C42⋊C4⋊8C2, C42⋊3C4⋊8C2, (C2×D4).131D4, C4.4D4⋊21C4, C42.24(C2×C4), (C22×C4).94D4, C4.30(C23⋊C4), (C2×D4).20C23, C23⋊C4.12C22, C4⋊1D4.134C22, C23.36(C22⋊C4), C23.C23⋊14C2, C4.4D4.121C22, C22.26C24.23C2, (C2×C4○D4)⋊7C4, (C2×D4).37(C2×C4), C2.38(C2×C23⋊C4), (C22×C4).81(C2×C4), (C2×C4).95(C22×C4), (C2×Q8).106(C2×C4), (C2×C4).26(C22⋊C4), (C2×C4○D4).74C22, C22.62(C2×C22⋊C4), SmallGroup(128,858)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊Q8⋊29C4
G = < a,b,c,d | a4=b4=d4=1, c2=b2, ab=ba, cac-1=a-1, dad-1=ab-1, cbc-1=b-1, dbd-1=a2b-1, cd=dc >
Subgroups: 324 in 129 conjugacy classes, 42 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C23⋊C4, C23⋊C4, C2×C42, C42⋊C2, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4⋊Q8, C2×C4○D4, C42⋊C4, C42⋊3C4, C23.C23, C22.26C24, C4⋊Q8⋊29C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C2×C23⋊C4, C4⋊Q8⋊29C4
Character table of C4⋊Q8⋊29C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | i | -i | -i | i | i | -1 | -i | -i | i | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | i | -i | -1 | i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | -i | i | -1 | -i | i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -i | -1 | i | i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | i | i | -i | -i | i | 1 | i | -i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | i | i | i | -i | -i | 1 | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -i | -i | -i | i | i | 1 | i | i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -i | -i | i | i | -i | 1 | -i | i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | -2 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 2 | 0 | -2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 2i | 0 | 0 | 0 | 2 | -2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | -2i | 0 | 0 | 0 | -2 | 2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | -2i | 0 | 0 | 0 | 2 | -2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 2i | 0 | 0 | 0 | -2 | 2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(9 10 11 12)(13 14 15 16)
(1 2 3 5)(4 7 8 6)(9 10 11 12)(13 14 15 16)
(1 7 3 6)(2 4 5 8)(9 15 11 13)(10 14 12 16)
(1 11)(2 10 5 12)(3 9)(4 14 8 16)(6 15)(7 13)
G:=sub<Sym(16)| (9,10,11,12)(13,14,15,16), (1,2,3,5)(4,7,8,6)(9,10,11,12)(13,14,15,16), (1,7,3,6)(2,4,5,8)(9,15,11,13)(10,14,12,16), (1,11)(2,10,5,12)(3,9)(4,14,8,16)(6,15)(7,13)>;
G:=Group( (9,10,11,12)(13,14,15,16), (1,2,3,5)(4,7,8,6)(9,10,11,12)(13,14,15,16), (1,7,3,6)(2,4,5,8)(9,15,11,13)(10,14,12,16), (1,11)(2,10,5,12)(3,9)(4,14,8,16)(6,15)(7,13) );
G=PermutationGroup([[(9,10,11,12),(13,14,15,16)], [(1,2,3,5),(4,7,8,6),(9,10,11,12),(13,14,15,16)], [(1,7,3,6),(2,4,5,8),(9,15,11,13),(10,14,12,16)], [(1,11),(2,10,5,12),(3,9),(4,14,8,16),(6,15),(7,13)]])
G:=TransitiveGroup(16,293);
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 3 2 4)(5 8 6 7)(9 12 11 10)(13 16 15 14)
(1 8 2 7)(3 5 4 6)(9 15 11 13)(10 14 12 16)
(1 15 6 12)(2 13 5 10)(3 16 8 11)(4 14 7 9)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3,2,4)(5,8,6,7)(9,12,11,10)(13,16,15,14), (1,8,2,7)(3,5,4,6)(9,15,11,13)(10,14,12,16), (1,15,6,12)(2,13,5,10)(3,16,8,11)(4,14,7,9)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,3,2,4)(5,8,6,7)(9,12,11,10)(13,16,15,14), (1,8,2,7)(3,5,4,6)(9,15,11,13)(10,14,12,16), (1,15,6,12)(2,13,5,10)(3,16,8,11)(4,14,7,9) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,3,2,4),(5,8,6,7),(9,12,11,10),(13,16,15,14)], [(1,8,2,7),(3,5,4,6),(9,15,11,13),(10,14,12,16)], [(1,15,6,12),(2,13,5,10),(3,16,8,11),(4,14,7,9)]])
G:=TransitiveGroup(16,322);
Matrix representation of C4⋊Q8⋊29C4 ►in GL4(𝔽5) generated by
2 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 2 |
0 | 3 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 3 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,GF(5))| [2,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[2,0,0,0,0,3,0,0,0,0,3,0,0,0,0,2],[0,3,0,0,3,0,0,0,0,0,0,3,0,0,3,0],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;
C4⋊Q8⋊29C4 in GAP, Magma, Sage, TeX
C_4\rtimes Q_8\rtimes_{29}C_4
% in TeX
G:=Group("C4:Q8:29C4");
// GroupNames label
G:=SmallGroup(128,858);
// by ID
G=gap.SmallGroup(128,858);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,352,1123,1018,248,1971,375,4037]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^4=1,c^2=b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,c*d=d*c>;
// generators/relations
Export