Copied to
clipboard

G = C2xQ8oM4(2)  order 128 = 27

Direct product of C2 and Q8oM4(2)

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xQ8oM4(2), C4.21C25, C8.22C24, M4(2):14C23, D4o(C2xM4(2)), M4(2)o(C2xD4), Q8o(C2xM4(2)), M4(2)o(C2xQ8), (C2xC8):11C23, C8oD4:20C22, C4o(Q8oM4(2)), C24.90(C2xC4), C4.43(C23xC4), C2.15(C24xC4), M4(2)o2(C4oD4), (C2xC4).605C24, (C22xC8):58C22, C4oD4.36C23, D4.27(C22xC4), (C22xD4).45C4, C22.8(C23xC4), (C22xQ8).35C4, Q8.28(C22xC4), M4(2)o2(C2xM4(2)), (C22xM4(2)):28C2, (C2xM4(2)):80C22, (C23xC4).621C22, C23.112(C22xC4), (C22xC4).1220C23, (C2xC8oD4):28C2, C4oD4o(C2xM4(2)), M4(2)o(C2xC4oD4), (C2xQ8)o(C2xM4(2)), (C2xC4oD4).33C4, C4oD4.35(C2xC4), (C2xD4).240(C2xC4), (C2xQ8).215(C2xC4), (C2xM4(2))o(C2xM4(2)), (C2xC4).284(C22xC4), (C22xC4).373(C2xC4), (C22xC4oD4).28C2, (C2xC4oD4).334C22, (C2xM4(2))o(C2xC4oD4), SmallGroup(128,2304)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2xQ8oM4(2)
C1C2C4C2xC4C22xC4C23xC4C22xC4oD4 — C2xQ8oM4(2)
C1C2 — C2xQ8oM4(2)
C1C2xC4 — C2xQ8oM4(2)
C1C2C2C4 — C2xQ8oM4(2)

Generators and relations for C2xQ8oM4(2)
 G = < a,b,c,d,e | a2=b4=e2=1, c2=d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d >

Subgroups: 812 in 730 conjugacy classes, 684 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, D4, Q8, C23, C23, C23, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, C22xC8, C2xM4(2), C8oD4, C23xC4, C22xD4, C22xQ8, C2xC4oD4, C22xM4(2), C2xC8oD4, Q8oM4(2), C22xC4oD4, C2xQ8oM4(2)
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C24, C23xC4, C25, Q8oM4(2), C24xC4, C2xQ8oM4(2)

Smallest permutation representation of C2xQ8oM4(2)
On 32 points
Generators in S32
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 21 5 17)(2 22 6 18)(3 23 7 19)(4 24 8 20)(9 31 13 27)(10 32 14 28)(11 25 15 29)(12 26 16 30)
(1 32 5 28)(2 25 6 29)(3 26 7 30)(4 27 8 31)(9 24 13 20)(10 17 14 21)(11 18 15 22)(12 19 16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 29)(27 31)

G:=sub<Sym(32)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,31,13,27)(10,32,14,28)(11,25,15,29)(12,26,16,30), (1,32,5,28)(2,25,6,29)(3,26,7,30)(4,27,8,31)(9,24,13,20)(10,17,14,21)(11,18,15,22)(12,19,16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,21,5,17)(2,22,6,18)(3,23,7,19)(4,24,8,20)(9,31,13,27)(10,32,14,28)(11,25,15,29)(12,26,16,30), (1,32,5,28)(2,25,6,29)(3,26,7,30)(4,27,8,31)(9,24,13,20)(10,17,14,21)(11,18,15,22)(12,19,16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,21,5,17),(2,22,6,18),(3,23,7,19),(4,24,8,20),(9,31,13,27),(10,32,14,28),(11,25,15,29),(12,26,16,30)], [(1,32,5,28),(2,25,6,29),(3,26,7,30),(4,27,8,31),(9,24,13,20),(10,17,14,21),(11,18,15,22),(12,19,16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,29),(27,31)]])

68 conjugacy classes

class 1 2A2B2C2D···2Q4A4B4C4D4E···4R8A···8AF
order12222···244444···48···8
size11112···211112···22···2

68 irreducible representations

dim111111114
type+++++
imageC1C2C2C2C2C4C4C4Q8oM4(2)
kernelC2xQ8oM4(2)C22xM4(2)C2xC8oD4Q8oM4(2)C22xC4oD4C22xD4C22xQ8C2xC4oD4C2
# reps16816162244

Matrix representation of C2xQ8oM4(2) in GL5(F17)

160000
016000
001600
000160
000016
,
10000
0164124
08105
00040
000813
,
10000
0131600
00400
000413
000013
,
10000
01210139
000151
0411011
08105
,
160000
010014
00100
000160
000016

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,16,8,0,0,0,4,1,0,0,0,12,0,4,8,0,4,5,0,13],[1,0,0,0,0,0,13,0,0,0,0,16,4,0,0,0,0,0,4,0,0,0,0,13,13],[1,0,0,0,0,0,12,0,4,8,0,10,0,11,1,0,13,15,0,0,0,9,1,11,5],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,14,0,0,16] >;

C2xQ8oM4(2) in GAP, Magma, Sage, TeX

C_2\times Q_8\circ M_4(2)
% in TeX

G:=Group("C2xQ8oM4(2)");
// GroupNames label

G:=SmallGroup(128,2304);
// by ID

G=gap.SmallGroup(128,2304);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,-2,224,723,2019,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=e^2=1,c^2=d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<