Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊M4(2)

Direct product G=N×Q with N=C2 and Q=C4⋊M4(2)
dρLabelID
C2×C4⋊M4(2)64C2xC4:M4(2)128,1635


Non-split extensions G=N.Q with N=C2 and Q=C4⋊M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊M4(2)) = C23.28C42central extension (φ=1)64C2.1(C4:M4(2))128,460
C2.2(C4⋊M4(2)) = C43.7C2central extension (φ=1)128C2.2(C4:M4(2))128,499
C2.3(C4⋊M4(2)) = C42.425D4central extension (φ=1)64C2.3(C4:M4(2))128,529
C2.4(C4⋊M4(2)) = C428C8central extension (φ=1)128C2.4(C4:M4(2))128,563
C2.5(C4⋊M4(2)) = C429C8central extension (φ=1)128C2.5(C4:M4(2))128,574
C2.6(C4⋊M4(2)) = C88M4(2)central stem extension (φ=1)64C2.6(C4:M4(2))128,298
C2.7(C4⋊M4(2)) = C87M4(2)central stem extension (φ=1)64C2.7(C4:M4(2))128,299
C2.8(C4⋊M4(2)) = C42.43Q8central stem extension (φ=1)64C2.8(C4:M4(2))128,300
C2.9(C4⋊M4(2)) = C81M4(2)central stem extension (φ=1)64C2.9(C4:M4(2))128,301
C2.10(C4⋊M4(2)) = (C2×C8).195D4central stem extension (φ=1)64C2.10(C4:M4(2))128,583
C2.11(C4⋊M4(2)) = C42.27Q8central stem extension (φ=1)128C2.11(C4:M4(2))128,672

׿
×
𝔽