Copied to
clipboard

G = C88M4(2)  order 128 = 27

2nd semidirect product of C8 and M4(2) acting via M4(2)/C2×C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C88M4(2), C42.50Q8, C42.319D4, C42.623C23, (C4×C8).18C4, C82C824C2, (C22×C8).40C4, (C2×C4).69SD16, C4.98(C2×SD16), C4.10(C4.Q8), C4.5(C8.C4), (C22×C4).81Q8, C4⋊C8.214C22, C23.49(C4⋊C4), (C4×C8).424C22, C42.310(C2×C4), (C22×C4).574D4, C4.43(C2×M4(2)), C22.10(C4.Q8), C4⋊M4(2).20C2, C2.6(C4⋊M4(2)), (C2×C42).1041C22, (C2×C4×C8).52C2, C2.4(C2×C4.Q8), (C2×C4).74(C4⋊C4), (C2×C8).231(C2×C4), C2.6(C2×C8.C4), C22.80(C2×C4⋊C4), (C2×C4).150(C2×Q8), (C2×C4).1459(C2×D4), (C2×C4).505(C22×C4), (C22×C4).474(C2×C4), SmallGroup(128,298)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C88M4(2)
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C88M4(2)
C1C2C2×C4 — C88M4(2)
C1C2×C4C2×C42 — C88M4(2)
C1C22C22C42 — C88M4(2)

Generators and relations for C88M4(2)
 G = < a,b,c | a8=b8=c2=1, bab-1=a3, ac=ca, cbc=b5 >

Subgroups: 140 in 92 conjugacy classes, 60 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C4×C8, C4×C8, C4⋊C8, C4⋊C8, C2×C42, C22×C8, C2×M4(2), C82C8, C2×C4×C8, C4⋊M4(2), C88M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, M4(2), SD16, C22×C4, C2×D4, C2×Q8, C4.Q8, C8.C4, C2×C4⋊C4, C2×M4(2), C2×SD16, C4⋊M4(2), C2×C4.Q8, C2×C8.C4, C88M4(2)

Smallest permutation representation of C88M4(2)
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 24 47 28 35 60 54 9)(2 19 48 31 36 63 55 12)(3 22 41 26 37 58 56 15)(4 17 42 29 38 61 49 10)(5 20 43 32 39 64 50 13)(6 23 44 27 40 59 51 16)(7 18 45 30 33 62 52 11)(8 21 46 25 34 57 53 14)
(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 61)(18 62)(19 63)(20 64)(21 57)(22 58)(23 59)(24 60)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,24,47,28,35,60,54,9)(2,19,48,31,36,63,55,12)(3,22,41,26,37,58,56,15)(4,17,42,29,38,61,49,10)(5,20,43,32,39,64,50,13)(6,23,44,27,40,59,51,16)(7,18,45,30,33,62,52,11)(8,21,46,25,34,57,53,14), (9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,24,47,28,35,60,54,9)(2,19,48,31,36,63,55,12)(3,22,41,26,37,58,56,15)(4,17,42,29,38,61,49,10)(5,20,43,32,39,64,50,13)(6,23,44,27,40,59,51,16)(7,18,45,30,33,62,52,11)(8,21,46,25,34,57,53,14), (9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,61)(18,62)(19,63)(20,64)(21,57)(22,58)(23,59)(24,60) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,24,47,28,35,60,54,9),(2,19,48,31,36,63,55,12),(3,22,41,26,37,58,56,15),(4,17,42,29,38,61,49,10),(5,20,43,32,39,64,50,13),(6,23,44,27,40,59,51,16),(7,18,45,30,33,62,52,11),(8,21,46,25,34,57,53,14)], [(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,61),(18,62),(19,63),(20,64),(21,57),(22,58),(23,59),(24,60)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N8A···8P8Q···8X
order12222244444···48···88···8
size11112211112···22···28···8

44 irreducible representations

dim1111112222222
type+++++-+-
imageC1C2C2C2C4C4D4Q8D4Q8M4(2)SD16C8.C4
kernelC88M4(2)C82C8C2×C4×C8C4⋊M4(2)C4×C8C22×C8C42C42C22×C4C22×C4C8C2×C4C4
# reps1412441111888

Matrix representation of C88M4(2) in GL4(𝔽17) generated by

9000
01500
0010
0001
,
0100
4000
0001
00130
,
1000
01600
0010
00016
G:=sub<GL(4,GF(17))| [9,0,0,0,0,15,0,0,0,0,1,0,0,0,0,1],[0,4,0,0,1,0,0,0,0,0,0,13,0,0,1,0],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16] >;

C88M4(2) in GAP, Magma, Sage, TeX

C_8\rtimes_8M_4(2)
% in TeX

G:=Group("C8:8M4(2)");
// GroupNames label

G:=SmallGroup(128,298);
// by ID

G=gap.SmallGroup(128,298);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,64,1430,1123,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^3,a*c=c*a,c*b*c=b^5>;
// generators/relations

׿
×
𝔽