Copied to
clipboard

G = C87M4(2)  order 128 = 27

1st semidirect product of C8 and M4(2) acting via M4(2)/C2×C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C87M4(2), C42.51Q8, C42.320D4, C42.624C23, (C4×C8).19C4, C81C825C2, (C2×C4).72D8, C4.83(C2×D8), (C2×C4).34Q16, C4.55(C2×Q16), (C22×C8).34C4, C4.14(C2.D8), C4.6(C8.C4), (C22×C4).82Q8, C4⋊C8.215C22, C23.50(C4⋊C4), C42.311(C2×C4), (C4×C8).390C22, (C22×C4).575D4, C4.44(C2×M4(2)), C22.12(C2.D8), C4⋊M4(2).21C2, C2.7(C4⋊M4(2)), (C2×C42).1042C22, (C2×C4×C8).32C2, C2.4(C2×C2.D8), (C2×C4).75(C4⋊C4), (C2×C8).220(C2×C4), C2.7(C2×C8.C4), C22.81(C2×C4⋊C4), (C2×C4).151(C2×Q8), (C2×C4).1460(C2×D4), (C2×C4).506(C22×C4), (C22×C4).475(C2×C4), SmallGroup(128,299)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C87M4(2)
C1C2C22C2×C4C42C2×C42C2×C4×C8 — C87M4(2)
C1C2C2×C4 — C87M4(2)
C1C2×C4C2×C42 — C87M4(2)
C1C22C22C42 — C87M4(2)

Generators and relations for C87M4(2)
 G = < a,b,c | a8=b8=c2=1, bab-1=a-1, ac=ca, cbc=b5 >

Subgroups: 140 in 92 conjugacy classes, 60 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C4×C8, C4×C8, C4⋊C8, C4⋊C8, C2×C42, C22×C8, C2×M4(2), C81C8, C2×C4×C8, C4⋊M4(2), C87M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, M4(2), D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, C8.C4, C2×C4⋊C4, C2×M4(2), C2×D8, C2×Q16, C4⋊M4(2), C2×C2.D8, C2×C8.C4, C87M4(2)

Smallest permutation representation of C87M4(2)
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16 48 26 39 60 54 19)(2 15 41 25 40 59 55 18)(3 14 42 32 33 58 56 17)(4 13 43 31 34 57 49 24)(5 12 44 30 35 64 50 23)(6 11 45 29 36 63 51 22)(7 10 46 28 37 62 52 21)(8 9 47 27 38 61 53 20)
(9 61)(10 62)(11 63)(12 64)(13 57)(14 58)(15 59)(16 60)(17 32)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16,48,26,39,60,54,19)(2,15,41,25,40,59,55,18)(3,14,42,32,33,58,56,17)(4,13,43,31,34,57,49,24)(5,12,44,30,35,64,50,23)(6,11,45,29,36,63,51,22)(7,10,46,28,37,62,52,21)(8,9,47,27,38,61,53,20), (9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16,48,26,39,60,54,19)(2,15,41,25,40,59,55,18)(3,14,42,32,33,58,56,17)(4,13,43,31,34,57,49,24)(5,12,44,30,35,64,50,23)(6,11,45,29,36,63,51,22)(7,10,46,28,37,62,52,21)(8,9,47,27,38,61,53,20), (9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16,48,26,39,60,54,19),(2,15,41,25,40,59,55,18),(3,14,42,32,33,58,56,17),(4,13,43,31,34,57,49,24),(5,12,44,30,35,64,50,23),(6,11,45,29,36,63,51,22),(7,10,46,28,37,62,52,21),(8,9,47,27,38,61,53,20)], [(9,61),(10,62),(11,63),(12,64),(13,57),(14,58),(15,59),(16,60),(17,32),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N8A···8P8Q···8X
order12222244444···48···88···8
size11112211112···22···28···8

44 irreducible representations

dim11111122222222
type+++++-+-+-
imageC1C2C2C2C4C4D4Q8D4Q8M4(2)D8Q16C8.C4
kernelC87M4(2)C81C8C2×C4×C8C4⋊M4(2)C4×C8C22×C8C42C42C22×C4C22×C4C8C2×C4C2×C4C4
# reps14124411118448

Matrix representation of C87M4(2) in GL4(𝔽17) generated by

8000
01500
0090
00152
,
0100
13000
001415
0043
,
1000
01600
0010
0001
G:=sub<GL(4,GF(17))| [8,0,0,0,0,15,0,0,0,0,9,15,0,0,0,2],[0,13,0,0,1,0,0,0,0,0,14,4,0,0,15,3],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1] >;

C87M4(2) in GAP, Magma, Sage, TeX

C_8\rtimes_7M_4(2)
% in TeX

G:=Group("C8:7M4(2)");
// GroupNames label

G:=SmallGroup(128,299);
// by ID

G=gap.SmallGroup(128,299);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,288,1430,1123,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c=b^5>;
// generators/relations

׿
×
𝔽