Extensions 1→N→G→Q→1 with N=Q8oM4(2) and Q=C2

Direct product G=NxQ with N=Q8oM4(2) and Q=C2
dρLabelID
C2xQ8oM4(2)32C2xQ8oM4(2)128,2304

Semidirect products G=N:Q with N=Q8oM4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
Q8oM4(2):1C2 = M4(2).37D4φ: C2/C1C2 ⊆ Out Q8oM4(2)168+Q8oM4(2):1C2128,1800
Q8oM4(2):2C2 = M4(2).38D4φ: C2/C1C2 ⊆ Out Q8oM4(2)328-Q8oM4(2):2C2128,1801
Q8oM4(2):3C2 = D8:C23φ: C2/C1C2 ⊆ Out Q8oM4(2)168+Q8oM4(2):3C2128,2317
Q8oM4(2):4C2 = C4.C25φ: C2/C1C2 ⊆ Out Q8oM4(2)328-Q8oM4(2):4C2128,2318
Q8oM4(2):5C2 = M4(2).44D4φ: C2/C1C2 ⊆ Out Q8oM4(2)324Q8oM4(2):5C2128,613
Q8oM4(2):6C2 = M4(2):19D4φ: C2/C1C2 ⊆ Out Q8oM4(2)164Q8oM4(2):6C2128,616
Q8oM4(2):7C2 = (C2xC8):D4φ: C2/C1C2 ⊆ Out Q8oM4(2)164Q8oM4(2):7C2128,623
Q8oM4(2):8C2 = M4(2).47D4φ: C2/C1C2 ⊆ Out Q8oM4(2)168+Q8oM4(2):8C2128,635
Q8oM4(2):9C2 = (C2xC8):4D4φ: C2/C1C2 ⊆ Out Q8oM4(2)168+Q8oM4(2):9C2128,642
Q8oM4(2):10C2 = M4(2):21D4φ: C2/C1C2 ⊆ Out Q8oM4(2)168+Q8oM4(2):10C2128,646
Q8oM4(2):11C2 = M4(2).24C23φ: C2/C1C2 ⊆ Out Q8oM4(2)168+Q8oM4(2):11C2128,1620
Q8oM4(2):12C2 = M4(2).25C23φ: C2/C1C2 ⊆ Out Q8oM4(2)328-Q8oM4(2):12C2128,1621
Q8oM4(2):13C2 = 2- 1+4:5C4φ: C2/C1C2 ⊆ Out Q8oM4(2)164Q8oM4(2):13C2128,1633
Q8oM4(2):14C2 = M4(2).51D4φ: C2/C1C2 ⊆ Out Q8oM4(2)164Q8oM4(2):14C2128,1688
Q8oM4(2):15C2 = M4(2)oD8φ: C2/C1C2 ⊆ Out Q8oM4(2)324Q8oM4(2):15C2128,1689
Q8oM4(2):16C2 = C4.22C25φ: trivial image324Q8oM4(2):16C2128,2305

Non-split extensions G=N.Q with N=Q8oM4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
Q8oM4(2).1C2 = M4(2).40D4φ: C2/C1C2 ⊆ Out Q8oM4(2)324Q8oM4(2).1C2128,590
Q8oM4(2).2C2 = M4(2).41D4φ: C2/C1C2 ⊆ Out Q8oM4(2)164Q8oM4(2).2C2128,593
Q8oM4(2).3C2 = (C2xD4).Q8φ: C2/C1C2 ⊆ Out Q8oM4(2)324Q8oM4(2).3C2128,600
Q8oM4(2).4C2 = M4(2).46D4φ: C2/C1C2 ⊆ Out Q8oM4(2)328-Q8oM4(2).4C2128,634
Q8oM4(2).5C2 = C4.(C4xD4)φ: C2/C1C2 ⊆ Out Q8oM4(2)328-Q8oM4(2).5C2128,641
Q8oM4(2).6C2 = M4(2).50D4φ: C2/C1C2 ⊆ Out Q8oM4(2)328-Q8oM4(2).6C2128,647
Q8oM4(2).7C2 = M4(2).29C23φ: C2/C1C2 ⊆ Out Q8oM4(2)324Q8oM4(2).7C2128,1648

׿
x
:
Z
F
o
wr
Q
<