Copied to
clipboard

G = 2- 1+4:5C4order 128 = 27

4th semidirect product of 2- 1+4 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: 2- 1+4:5C4, 2+ 1+4:6C4, C42.671C23, M4(2).26C23, D4oC4wrC2, Q8oC4wrC2, C4oD4.57D4, C4wrC2:16C22, (C2xD4).291D4, C4.12(C23xC4), (C2xQ8).226D4, Q8oM4(2):13C2, (C2xC4).182C24, (C2xC42):35C22, C4oD4.21C23, D4.23(C22xC4), C4.182(C22xD4), C23.229(C2xD4), Q8.23(C22xC4), D4.21(C22:C4), C2.C25.3C2, Q8.21(C22:C4), C22.29(C22xD4), C42:C2:77C22, C42:C22:19C2, (C2xM4(2)):43C22, (C22xC4).904C23, C4oD4oC4wrC2, C4oD4:3(C2xC4), (C4xC4oD4):2C2, (C2xC4wrC2):30C2, (C2xD4):25(C2xC4), (C2xQ8):19(C2xC4), (C2xC4).448(C2xD4), C4.35(C2xC22:C4), (C2xC4).64(C22xC4), C22.8(C2xC22:C4), (C2xC4oD4).86C22, C2.44(C22xC22:C4), SmallGroup(128,1633)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — 2- 1+4:5C4
C1C2C4C2xC4C22xC4C2xC4oD4C2.C25 — 2- 1+4:5C4
C1C2C4 — 2- 1+4:5C4
C1C4C2xC4oD4 — 2- 1+4:5C4
C1C2C2C2xC4 — 2- 1+4:5C4

Generators and relations for 2- 1+4:5C4
 G = < a,b,c,d,e | a4=b2=d2=e4=1, c2=a2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=a2c, ce=ec, ede-1=a2cd >

Subgroups: 636 in 369 conjugacy classes, 170 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C42, C22:C4, C4:C4, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C2xQ8, C4oD4, C4oD4, C4wrC2, C2xC42, C42:C2, C4xD4, C4xQ8, C2xM4(2), C8oD4, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, 2+ 1+4, 2- 1+4, 2- 1+4, C2xC4wrC2, C42:C22, C4xC4oD4, Q8oM4(2), C2.C25, 2- 1+4:5C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C24, C2xC22:C4, C23xC4, C22xD4, C22xC22:C4, 2- 1+4:5C4

Permutation representations of 2- 1+4:5C4
On 16 points - transitive group 16T207
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 3)(5 7)(10 12)(13 15)
(1 10 3 12)(2 11 4 9)(5 15 7 13)(6 16 8 14)
(1 5)(2 6)(3 7)(4 8)(9 16)(10 13)(11 14)(12 15)
(1 10 3 12)(2 11 4 9)(5 7)(6 8)(13 15)(14 16)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,3)(5,7)(10,12)(13,15), (1,10,3,12)(2,11,4,9)(5,15,7,13)(6,16,8,14), (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15), (1,10,3,12)(2,11,4,9)(5,7)(6,8)(13,15)(14,16)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,3)(5,7)(10,12)(13,15), (1,10,3,12)(2,11,4,9)(5,15,7,13)(6,16,8,14), (1,5)(2,6)(3,7)(4,8)(9,16)(10,13)(11,14)(12,15), (1,10,3,12)(2,11,4,9)(5,7)(6,8)(13,15)(14,16) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,3),(5,7),(10,12),(13,15)], [(1,10,3,12),(2,11,4,9),(5,15,7,13),(6,16,8,14)], [(1,5),(2,6),(3,7),(4,8),(9,16),(10,13),(11,14),(12,15)], [(1,10,3,12),(2,11,4,9),(5,7),(6,8),(13,15),(14,16)]])

G:=TransitiveGroup(16,207);

44 conjugacy classes

class 1 2A2B···2H2I2J2K2L4A4B4C···4M4N···4W8A···8H
order122···22222444···44···48···8
size112···24444112···24···44···4

44 irreducible representations

dim111111112224
type+++++++++
imageC1C2C2C2C2C2C4C4D4D4D42- 1+4:5C4
kernel2- 1+4:5C4C2xC4wrC2C42:C22C4xC4oD4Q8oM4(2)C2.C252+ 1+42- 1+4C2xD4C2xQ8C4oD4C1
# reps166111883144

Matrix representation of 2- 1+4:5C4 in GL4(F5) generated by

2000
0300
0020
0003
,
0400
4000
0002
0030
,
2000
0200
0030
0003
,
0020
0001
3000
0100
,
3000
0300
0010
0001
G:=sub<GL(4,GF(5))| [2,0,0,0,0,3,0,0,0,0,2,0,0,0,0,3],[0,4,0,0,4,0,0,0,0,0,0,3,0,0,2,0],[2,0,0,0,0,2,0,0,0,0,3,0,0,0,0,3],[0,0,3,0,0,0,0,1,2,0,0,0,0,1,0,0],[3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1] >;

2- 1+4:5C4 in GAP, Magma, Sage, TeX

2_-^{1+4}\rtimes_5C_4
% in TeX

G:=Group("ES-(2,2):5C4");
// GroupNames label

G:=SmallGroup(128,1633);
// by ID

G=gap.SmallGroup(128,1633);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,521,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=d^2=e^4=1,c^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,c*e=e*c,e*d*e^-1=a^2*c*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<