Extensions 1→N→G→Q→1 with N=2- 1+4 and Q=C4

Direct product G=N×Q with N=2- 1+4 and Q=C4
dρLabelID
C4×2- 1+464C4xES-(2,2)128,2162

Semidirect products G=N:Q with N=2- 1+4 and Q=C4
extensionφ:Q→Out NdρLabelID
2- 1+4⋊C4 = C42.3D4φ: C4/C1C4 ⊆ Out 2- 1+4164ES-(2,2):C4128,136
2- 1+42C4 = 2- 1+42C4φ: C4/C2C2 ⊆ Out 2- 1+432ES-(2,2):2C4128,525
2- 1+43C4 = 2+ 1+44C4φ: C4/C2C2 ⊆ Out 2- 1+4324ES-(2,2):3C4128,526
2- 1+44C4 = 2- 1+44C4φ: C4/C2C2 ⊆ Out 2- 1+464ES-(2,2):4C4128,1630
2- 1+45C4 = 2- 1+45C4φ: C4/C2C2 ⊆ Out 2- 1+4164ES-(2,2):5C4128,1633

Non-split extensions G=N.Q with N=2- 1+4 and Q=C4
extensionφ:Q→Out NdρLabelID
2- 1+4.C4 = C42.4D4φ: C4/C1C4 ⊆ Out 2- 1+4164-ES-(2,2).C4128,137
2- 1+4.2C4 = C4.22C25φ: trivial image324ES-(2,2).2C4128,2305

׿
×
𝔽