Copied to
clipboard

G = 2+ 1+4:4C4order 128 = 27

3rd semidirect product of 2+ 1+4 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: 2+ 1+4:4C4, 2- 1+4:3C4, C4oD4.42D4, (C2xD4).69D4, (C2xQ8).67D4, (C22xC8):4C22, C23.31(C2xD4), (C22xC4).59D4, C4.113C22wrC2, C42:C22:8C2, D4.12(C22:C4), C42:C2:1C22, C22.11C22wrC2, C23.24D4:1C2, C23.7(C22:C4), C2.C25.2C2, Q8.12(C22:C4), C2.19(C24:3C4), (C2xM4(2)):40C22, C23.C23:1C2, (C22xC4).659C23, C4oD4.3(C2xC4), C4.7(C2xC22:C4), (C2xD4).65(C2xC4), (C2xC4).977(C2xD4), (C2xC4).5(C22xC4), (C2xQ8).58(C2xC4), (C2xC4oD4).7C22, (C22xC8):C2:21C2, (C2xC4).11(C22:C4), C22.13(C2xC22:C4), SmallGroup(128,526)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — 2+ 1+4:4C4
C1C2C4C2xC4C22xC4C2xC4oD4C2.C25 — 2+ 1+4:4C4
C1C2C2xC4 — 2+ 1+4:4C4
C1C4C22xC4 — 2+ 1+4:4C4
C1C2C2C22xC4 — 2+ 1+4:4C4

Generators and relations for 2+ 1+4:4C4
 G = < a,b,c,d,e | a4=b2=e4=1, c2=d2=a2, bab=a-1, ebe-1=ac=ca, ad=da, eae-1=a2d, bc=cb, bd=db, dcd-1=a2c, ece-1=a2bd, ede-1=a >

Subgroups: 556 in 274 conjugacy classes, 66 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C2xQ8, C2xQ8, C4oD4, C4oD4, C22:C8, C23:C4, D4:C4, Q8:C4, C4wrC2, C42:C2, C22xC8, C2xM4(2), C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, 2+ 1+4, 2- 1+4, 2- 1+4, (C22xC8):C2, C23.C23, C23.24D4, C42:C22, C2.C25, 2+ 1+4:4C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C2xC22:C4, C22wrC2, C24:3C4, 2+ 1+4:4C4

Smallest permutation representation of 2+ 1+4:4C4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 2)(3 4)(5 6)(7 8)(9 12)(10 11)(13 28)(14 27)(15 26)(16 25)(17 18)(19 20)(21 32)(22 31)(23 30)(24 29)
(1 7 3 5)(2 8 4 6)(9 18 11 20)(10 19 12 17)(13 29 15 31)(14 30 16 32)(21 27 23 25)(22 28 24 26)
(1 12 3 10)(2 9 4 11)(5 17 7 19)(6 18 8 20)(13 30 15 32)(14 31 16 29)(21 28 23 26)(22 25 24 27)
(1 29 10 30)(2 14 9 13)(3 31 12 32)(4 16 11 15)(5 27 17 26)(6 22 20 23)(7 25 19 28)(8 24 18 21)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,28)(14,27)(15,26)(16,25)(17,18)(19,20)(21,32)(22,31)(23,30)(24,29), (1,7,3,5)(2,8,4,6)(9,18,11,20)(10,19,12,17)(13,29,15,31)(14,30,16,32)(21,27,23,25)(22,28,24,26), (1,12,3,10)(2,9,4,11)(5,17,7,19)(6,18,8,20)(13,30,15,32)(14,31,16,29)(21,28,23,26)(22,25,24,27), (1,29,10,30)(2,14,9,13)(3,31,12,32)(4,16,11,15)(5,27,17,26)(6,22,20,23)(7,25,19,28)(8,24,18,21)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,28)(14,27)(15,26)(16,25)(17,18)(19,20)(21,32)(22,31)(23,30)(24,29), (1,7,3,5)(2,8,4,6)(9,18,11,20)(10,19,12,17)(13,29,15,31)(14,30,16,32)(21,27,23,25)(22,28,24,26), (1,12,3,10)(2,9,4,11)(5,17,7,19)(6,18,8,20)(13,30,15,32)(14,31,16,29)(21,28,23,26)(22,25,24,27), (1,29,10,30)(2,14,9,13)(3,31,12,32)(4,16,11,15)(5,27,17,26)(6,22,20,23)(7,25,19,28)(8,24,18,21) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11),(13,28),(14,27),(15,26),(16,25),(17,18),(19,20),(21,32),(22,31),(23,30),(24,29)], [(1,7,3,5),(2,8,4,6),(9,18,11,20),(10,19,12,17),(13,29,15,31),(14,30,16,32),(21,27,23,25),(22,28,24,26)], [(1,12,3,10),(2,9,4,11),(5,17,7,19),(6,18,8,20),(13,30,15,32),(14,31,16,29),(21,28,23,26),(22,25,24,27)], [(1,29,10,30),(2,14,9,13),(3,31,12,32),(4,16,11,15),(5,27,17,26),(6,22,20,23),(7,25,19,28),(8,24,18,21)]])

32 conjugacy classes

class 1 2A2B2C2D2E···2J4A4B4C4D4E4F···4K4L4M4N4O8A8B8C8D8E8F
order122222···2444444···44444888888
size112224···4112224···48888444488

32 irreducible representations

dim1111111122224
type++++++++++
imageC1C2C2C2C2C2C4C4D4D4D4D42+ 1+4:4C4
kernel2+ 1+4:4C4(C22xC8):C2C23.C23C23.24D4C42:C22C2.C252+ 1+42- 1+4C22xC4C2xD4C2xQ8C4oD4C1
# reps1112214424244

Matrix representation of 2+ 1+4:4C4 in GL4(F17) generated by

16008
40131
01304
4001
,
1009
001316
04013
00016
,
10150
130416
10160
0140
,
13080
00113
0040
01310
,
82152
014512
52150
514514
G:=sub<GL(4,GF(17))| [16,4,0,4,0,0,13,0,0,13,0,0,8,1,4,1],[1,0,0,0,0,0,4,0,0,13,0,0,9,16,13,16],[1,13,1,0,0,0,0,1,15,4,16,4,0,16,0,0],[13,0,0,0,0,0,0,13,8,1,4,1,0,13,0,0],[8,0,5,5,2,14,2,14,15,5,15,5,2,12,0,14] >;

2+ 1+4:4C4 in GAP, Magma, Sage, TeX

2_+^{1+4}\rtimes_4C_4
% in TeX

G:=Group("ES+(2,2):4C4");
// GroupNames label

G:=SmallGroup(128,526);
// by ID

G=gap.SmallGroup(128,526);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,2019,1018,521,248,1411,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=e^4=1,c^2=d^2=a^2,b*a*b=a^-1,e*b*e^-1=a*c=c*a,a*d=d*a,e*a*e^-1=a^2*d,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c,e*c*e^-1=a^2*b*d,e*d*e^-1=a>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<